ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlim GIF version

Theorem caucvgprlemlim 7741
Description: Lemma for caucvgpr 7742. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemlim (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙,𝑘   𝑛,𝐹,𝑘   𝑗,𝑘,𝜑,𝑥   𝑘,𝑙,𝑢,𝑥,𝑗   𝑗,𝐿,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑛,𝑙)   𝐴(𝑥,𝑢,𝑘,𝑛,𝑙)   𝐹(𝑥)   𝐿(𝑥,𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemlim
StepHypRef Expression
1 archrecnq 7723 . . . 4 (𝑥Q → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥)
21adantl 277 . . 3 ((𝜑𝑥Q) → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥)
3 caucvgpr.f . . . . . . . . . 10 (𝜑𝐹:NQ)
43ad5antr 496 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝐹:NQ)
5 caucvgpr.cau . . . . . . . . . 10 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
65ad5antr 496 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
7 caucvgpr.bnd . . . . . . . . . 10 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
87ad5antr 496 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ∀𝑗N 𝐴 <Q (𝐹𝑗))
9 caucvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
10 simpr 110 . . . . . . . . . 10 ((𝜑𝑥Q) → 𝑥Q)
1110ad4antr 494 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝑥Q)
12 simpr 110 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝑗 <N 𝑘)
13 simpllr 534 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥)
144, 6, 8, 9, 11, 12, 13caucvgprlem1 7739 . . . . . . . 8 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩))
154, 6, 8, 9, 11, 12, 13caucvgprlem2 7740 . . . . . . . 8 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)
1614, 15jca 306 . . . . . . 7 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))
1716ex 115 . . . . . 6 (((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) → (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
1817ralrimiva 2567 . . . . 5 ((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) → ∀𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
1918ex 115 . . . 4 (((𝜑𝑥Q) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → ∀𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))))
2019reximdva 2596 . . 3 ((𝜑𝑥Q) → (∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))))
212, 20mpd 13 . 2 ((𝜑𝑥Q) → ∃𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
2221ralrimiva 2567 1 (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {cab 2179  wral 2472  wrex 2473  {crab 2476  cop 3621   class class class wbr 4029  wf 5250  cfv 5254  (class class class)co 5918  1oc1o 6462  [cec 6585  Ncnpi 7332   <N clti 7335   ~Q ceq 7339  Qcnq 7340   +Q cplq 7342  *Qcrq 7344   <Q cltq 7345   +P cpp 7353  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-iltp 7530
This theorem is referenced by:  caucvgpr  7742
  Copyright terms: Public domain W3C validator