ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlim GIF version

Theorem caucvgprlemlim 7143
Description: Lemma for caucvgpr 7144. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemlim (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙,𝑘   𝑛,𝐹,𝑘   𝑗,𝑘,𝜑,𝑥   𝑘,𝑙,𝑢,𝑥,𝑗   𝑗,𝐿,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑛,𝑙)   𝐴(𝑥,𝑢,𝑘,𝑛,𝑙)   𝐹(𝑥)   𝐿(𝑥,𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemlim
StepHypRef Expression
1 archrecnq 7125 . . . 4 (𝑥Q → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥)
21adantl 271 . . 3 ((𝜑𝑥Q) → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥)
3 caucvgpr.f . . . . . . . . . 10 (𝜑𝐹:NQ)
43ad5antr 480 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝐹:NQ)
5 caucvgpr.cau . . . . . . . . . 10 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
65ad5antr 480 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
7 caucvgpr.bnd . . . . . . . . . 10 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
87ad5antr 480 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ∀𝑗N 𝐴 <Q (𝐹𝑗))
9 caucvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
10 simpr 108 . . . . . . . . . 10 ((𝜑𝑥Q) → 𝑥Q)
1110ad4antr 478 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝑥Q)
12 simpr 108 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝑗 <N 𝑘)
13 simpllr 501 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥)
144, 6, 8, 9, 11, 12, 13caucvgprlem1 7141 . . . . . . . 8 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩))
154, 6, 8, 9, 11, 12, 13caucvgprlem2 7142 . . . . . . . 8 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)
1614, 15jca 300 . . . . . . 7 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))
1716ex 113 . . . . . 6 (((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) → (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
1817ralrimiva 2440 . . . . 5 ((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥) → ∀𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
1918ex 113 . . . 4 (((𝜑𝑥Q) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥 → ∀𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))))
2019reximdva 2469 . . 3 ((𝜑𝑥Q) → (∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))))
212, 20mpd 13 . 2 ((𝜑𝑥Q) → ∃𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
2221ralrimiva 2440 1 (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  {cab 2069  wral 2353  wrex 2354  {crab 2357  cop 3425   class class class wbr 3811  wf 4965  cfv 4969  (class class class)co 5591  1𝑜c1o 6106  [cec 6220  Ncnpi 6734   <N clti 6737   ~Q ceq 6741  Qcnq 6742   +Q cplq 6744  *Qcrq 6746   <Q cltq 6747   +P cpp 6755  <P cltp 6757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-2o 6114  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-rq 6814  df-ltnqqs 6815  df-enq0 6886  df-nq0 6887  df-0nq0 6888  df-plq0 6889  df-mq0 6890  df-inp 6928  df-iplp 6930  df-iltp 6932
This theorem is referenced by:  caucvgpr  7144
  Copyright terms: Public domain W3C validator