ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlim GIF version

Theorem caucvgprlemlim 7622
Description: Lemma for caucvgpr 7623. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemlim (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙,𝑘   𝑛,𝐹,𝑘   𝑗,𝑘,𝜑,𝑥   𝑘,𝑙,𝑢,𝑥,𝑗   𝑗,𝐿,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑛,𝑙)   𝐴(𝑥,𝑢,𝑘,𝑛,𝑙)   𝐹(𝑥)   𝐿(𝑥,𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemlim
StepHypRef Expression
1 archrecnq 7604 . . . 4 (𝑥Q → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥)
21adantl 275 . . 3 ((𝜑𝑥Q) → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥)
3 caucvgpr.f . . . . . . . . . 10 (𝜑𝐹:NQ)
43ad5antr 488 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝐹:NQ)
5 caucvgpr.cau . . . . . . . . . 10 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
65ad5antr 488 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
7 caucvgpr.bnd . . . . . . . . . 10 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
87ad5antr 488 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ∀𝑗N 𝐴 <Q (𝐹𝑗))
9 caucvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
10 simpr 109 . . . . . . . . . 10 ((𝜑𝑥Q) → 𝑥Q)
1110ad4antr 486 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝑥Q)
12 simpr 109 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝑗 <N 𝑘)
13 simpllr 524 . . . . . . . . 9 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥)
144, 6, 8, 9, 11, 12, 13caucvgprlem1 7620 . . . . . . . 8 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩))
154, 6, 8, 9, 11, 12, 13caucvgprlem2 7621 . . . . . . . 8 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)
1614, 15jca 304 . . . . . . 7 ((((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))
1716ex 114 . . . . . 6 (((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) ∧ 𝑘N) → (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
1817ralrimiva 2539 . . . . 5 ((((𝜑𝑥Q) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) → ∀𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
1918ex 114 . . . 4 (((𝜑𝑥Q) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → ∀𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))))
2019reximdva 2568 . . 3 ((𝜑𝑥Q) → (∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))))
212, 20mpd 13 . 2 ((𝜑𝑥Q) → ∃𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
2221ralrimiva 2539 1 (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982  wf 5184  cfv 5188  (class class class)co 5842  1oc1o 6377  [cec 6499  Ncnpi 7213   <N clti 7216   ~Q ceq 7220  Qcnq 7221   +Q cplq 7223  *Qcrq 7225   <Q cltq 7226   +P cpp 7234  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  caucvgpr  7623
  Copyright terms: Public domain W3C validator