ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemglsq GIF version

Theorem resqrexlemglsq 10282
Description: Lemma for resqrex 10286. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemsqa.g 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
Assertion
Ref Expression
resqrexlemglsq (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹,𝑗,𝑘,𝑖,𝑦,𝑧   𝑥,𝐹,𝑘   𝑒,𝐿,𝑗,𝑘,𝑖,𝑦,𝑧   𝜑,𝑒,𝑖,𝑗,𝑘,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑒,𝑖,𝑗,𝑘)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)   𝐿(𝑥)

Proof of Theorem resqrexlemglsq
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5599 . . . . . . 7 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (𝐿 + 𝑓) = (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))))
21breq2d 3823 . . . . . 6 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) < (𝐿 + 𝑓) ↔ (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿)))))
3 oveq2 5599 . . . . . . 7 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) + 𝑓) = ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))
43breq2d 3823 . . . . . 6 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (𝐿 < ((𝐹𝑘) + 𝑓) ↔ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))))
52, 4anbi12d 457 . . . . 5 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)) ↔ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))))
65rexralbidv 2398 . . . 4 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
8 fveq2 5253 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
98breq1d 3821 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑘) < (𝐿 + 𝑒)))
108oveq1d 5606 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑘) + 𝑒))
1110breq2d 3823 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑘) + 𝑒)))
129, 11anbi12d 457 . . . . . . . . . 10 (𝑖 = 𝑘 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒))))
1312cbvralv 2583 . . . . . . . . 9 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
1413rexbii 2379 . . . . . . . 8 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
1514ralbii 2378 . . . . . . 7 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
167, 15sylib 120 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
17 oveq2 5599 . . . . . . . . . 10 (𝑒 = 𝑓 → (𝐿 + 𝑒) = (𝐿 + 𝑓))
1817breq2d 3823 . . . . . . . . 9 (𝑒 = 𝑓 → ((𝐹𝑘) < (𝐿 + 𝑒) ↔ (𝐹𝑘) < (𝐿 + 𝑓)))
19 oveq2 5599 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝐹𝑘) + 𝑒) = ((𝐹𝑘) + 𝑓))
2019breq2d 3823 . . . . . . . . 9 (𝑒 = 𝑓 → (𝐿 < ((𝐹𝑘) + 𝑒) ↔ 𝐿 < ((𝐹𝑘) + 𝑓)))
2118, 20anbi12d 457 . . . . . . . 8 (𝑒 = 𝑓 → (((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓))))
2221rexralbidv 2398 . . . . . . 7 (𝑒 = 𝑓 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓))))
2322cbvralv 2583 . . . . . 6 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
2416, 23sylib 120 . . . . 5 (𝜑 → ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
2524adantr 270 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
26 simpr 108 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
27 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
28 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
29 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
3027, 28, 29resqrexlemf 10267 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
3130adantr 270 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 𝐹:ℕ⟶ℝ+)
32 1nn 8327 . . . . . . . . . 10 1 ∈ ℕ
3332a1i 9 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℕ)
3431, 33ffvelrnd 5380 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ+)
3534rpred 9068 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ)
36 resqrexlemgt0.rr . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
3736adantr 270 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝐿 ∈ ℝ)
3835, 37readdcld 7420 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1) + 𝐿) ∈ ℝ)
3934rpgt0d 9071 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 0 < (𝐹‘1))
4027, 28, 29, 36, 7resqrexlemgt0 10280 . . . . . . . 8 (𝜑 → 0 ≤ 𝐿)
4140adantr 270 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 0 ≤ 𝐿)
42 addgtge0 7831 . . . . . . 7 ((((𝐹‘1) ∈ ℝ ∧ 𝐿 ∈ ℝ) ∧ (0 < (𝐹‘1) ∧ 0 ≤ 𝐿)) → 0 < ((𝐹‘1) + 𝐿))
4335, 37, 39, 41, 42syl22anc 1171 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 0 < ((𝐹‘1) + 𝐿))
4438, 43elrpd 9066 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1) + 𝐿) ∈ ℝ+)
4526, 44rpdivcld 9086 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ+)
466, 25, 45rspcdva 2717 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))))
47 simpllr 501 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑗 ∈ ℕ)
48 simplr 497 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑘 ∈ (ℤ𝑗))
49 eluznn 8982 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
5047, 48, 49syl2anc 403 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑘 ∈ ℕ)
5131ad3antrrr 476 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐹:ℕ⟶ℝ+)
5251, 50ffvelrnd 5380 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℝ+)
53 2z 8674 . . . . . . . . . . 11 2 ∈ ℤ
5453a1i 9 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 2 ∈ ℤ)
5552, 54rpexpcld 9945 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) ∈ ℝ+)
56 fveq2 5253 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
5756oveq1d 5606 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐹𝑥)↑2) = ((𝐹𝑘)↑2))
58 resqrexlemsqa.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
5957, 58fvmptg 5325 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ((𝐹𝑘)↑2) ∈ ℝ+) → (𝐺𝑘) = ((𝐹𝑘)↑2))
6050, 55, 59syl2anc 403 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) = ((𝐹𝑘)↑2))
6152rpred 9068 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℝ)
6261recnd 7419 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℂ)
6337ad3antrrr 476 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ∈ ℝ)
6463recnd 7419 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ∈ ℂ)
65 subsq 9897 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℂ ∧ 𝐿 ∈ ℂ) → (((𝐹𝑘)↑2) − (𝐿↑2)) = (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)))
6662, 64, 65syl2anc 403 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘)↑2) − (𝐿↑2)) = (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)))
6761, 63readdcld 7420 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) + 𝐿) ∈ ℝ)
6861, 63resubcld 7762 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) − 𝐿) ∈ ℝ)
6967, 68remulcld 7421 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) ∈ ℝ)
7038ad3antrrr 476 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹‘1) + 𝐿) ∈ ℝ)
7170, 68remulcld 7421 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) ∈ ℝ)
7226ad3antrrr 476 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑒 ∈ ℝ+)
7372rpred 9068 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑒 ∈ ℝ)
7428ad4antr 478 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐴 ∈ ℝ)
7529ad4antr 478 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ 𝐴)
767ad4antr 478 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
7727, 74, 75, 63, 76, 50resqrexlemoverl 10281 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ≤ (𝐹𝑘))
7861, 63subge0d 7912 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (0 ≤ ((𝐹𝑘) − 𝐿) ↔ 𝐿 ≤ (𝐹𝑘)))
7977, 78mpbird 165 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ ((𝐹𝑘) − 𝐿))
80 fveq2 5253 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
8180oveq1d 5606 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((𝐹𝑘) + 𝐿) = ((𝐹‘1) + 𝐿))
82 eqle 7479 . . . . . . . . . . . . . 14 ((((𝐹𝑘) + 𝐿) ∈ ℝ ∧ ((𝐹𝑘) + 𝐿) = ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
8367, 81, 82syl2an 283 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 𝑘 = 1) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
8461adantr 270 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) ∈ ℝ)
8535ad4antr 478 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹‘1) ∈ ℝ)
8663adantr 270 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝐿 ∈ ℝ)
8728ad5antr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝐴 ∈ ℝ)
8829ad5antr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 0 ≤ 𝐴)
8932a1i 9 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 1 ∈ ℕ)
9050adantr 270 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝑘 ∈ ℕ)
91 simpr 108 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 1 < 𝑘)
9227, 87, 88, 89, 90, 91resqrexlemdecn 10272 . . . . . . . . . . . . . . 15 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) < (𝐹‘1))
9384, 85, 92ltled 7505 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) ≤ (𝐹‘1))
9484, 85, 86, 93leadd1dd 7936 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
95 nn1gt1 8349 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 = 1 ∨ 1 < 𝑘))
9650, 95syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑘 = 1 ∨ 1 < 𝑘))
9783, 94, 96mpjaodan 745 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
9867, 70, 68, 79, 97lemul1ad 8294 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) ≤ (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)))
99 simprl 498 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))))
10045ad3antrrr 476 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ+)
101100rpred 9068 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ)
10261, 63, 101ltsubadd2d 7920 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿)) ↔ (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿)))))
10399, 102mpbird 165 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿)))
10444ad3antrrr 476 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹‘1) + 𝐿) ∈ ℝ+)
10568, 73, 104ltmuldiv2d 9117 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒 ↔ ((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿))))
106103, 105mpbird 165 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒)
10769, 71, 73, 98, 106lelttrd 7511 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒)
10866, 107eqbrtrd 3831 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘)↑2) − (𝐿↑2)) < 𝑒)
10961resqcld 9947 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) ∈ ℝ)
11063resqcld 9947 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ∈ ℝ)
111109, 110, 73ltsubadd2d 7920 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((((𝐹𝑘)↑2) − (𝐿↑2)) < 𝑒 ↔ ((𝐹𝑘)↑2) < ((𝐿↑2) + 𝑒)))
112108, 111mpbid 145 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) < ((𝐿↑2) + 𝑒))
11360, 112eqbrtrd 3831 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) < ((𝐿↑2) + 𝑒))
11460, 109eqeltrd 2159 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) ∈ ℝ)
115114, 73readdcld 7420 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐺𝑘) + 𝑒) ∈ ℝ)
11641ad3antrrr 476 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ 𝐿)
117 le2sq2 9867 . . . . . . . . . 10 (((𝐿 ∈ ℝ ∧ 0 ≤ 𝐿) ∧ ((𝐹𝑘) ∈ ℝ ∧ 𝐿 ≤ (𝐹𝑘))) → (𝐿↑2) ≤ ((𝐹𝑘)↑2))
11863, 116, 61, 77, 117syl22anc 1171 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ≤ ((𝐹𝑘)↑2))
119118, 60breqtrrd 3837 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ≤ (𝐺𝑘))
120114, 72ltaddrpd 9102 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) < ((𝐺𝑘) + 𝑒))
121110, 114, 115, 119, 120lelttrd 7511 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) < ((𝐺𝑘) + 𝑒))
122113, 121jca 300 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
123122ex 113 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
124123ralimdva 2435 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
125124reximdva 2469 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
12646, 125mpd 13 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
127126ralrimiva 2440 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 662   = wceq 1285  wcel 1434  wral 2353  wrex 2354  {csn 3422   class class class wbr 3811  cmpt 3865   × cxp 4399  wf 4965  cfv 4969  (class class class)co 5591  cmpt2 5593  cc 7251  cr 7252  0cc0 7253  1c1 7254   + caddc 7256   · cmul 7258   < clt 7425  cle 7426  cmin 7556   / cdiv 8037  cn 8316  2c2 8366  cz 8646  cuz 8914  +crp 9029  seqcseq 9740  cexp 9791
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-3 8376  df-4 8377  df-n0 8566  df-z 8647  df-uz 8915  df-rp 9030  df-iseq 9741  df-iexp 9792
This theorem is referenced by:  resqrexlemsqa  10284
  Copyright terms: Public domain W3C validator