ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemglsq GIF version

Theorem resqrexlemglsq 11015
Description: Lemma for resqrex 11019. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemsqa.g 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
Assertion
Ref Expression
resqrexlemglsq (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹,𝑗,𝑘,𝑖,𝑦,𝑧   𝑥,𝐹,𝑘   𝑒,𝐿,𝑗,𝑘,𝑖,𝑦,𝑧   𝜑,𝑒,𝑖,𝑗,𝑘,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑒,𝑖,𝑗,𝑘)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)   𝐿(𝑥)

Proof of Theorem resqrexlemglsq
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5877 . . . . . . 7 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (𝐿 + 𝑓) = (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))))
21breq2d 4012 . . . . . 6 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) < (𝐿 + 𝑓) ↔ (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿)))))
3 oveq2 5877 . . . . . . 7 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) + 𝑓) = ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))
43breq2d 4012 . . . . . 6 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (𝐿 < ((𝐹𝑘) + 𝑓) ↔ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))))
52, 4anbi12d 473 . . . . 5 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)) ↔ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))))
65rexralbidv 2503 . . . 4 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
8 fveq2 5511 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
98breq1d 4010 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑘) < (𝐿 + 𝑒)))
108oveq1d 5884 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑘) + 𝑒))
1110breq2d 4012 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑘) + 𝑒)))
129, 11anbi12d 473 . . . . . . . . . 10 (𝑖 = 𝑘 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒))))
1312cbvralv 2703 . . . . . . . . 9 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
1413rexbii 2484 . . . . . . . 8 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
1514ralbii 2483 . . . . . . 7 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
167, 15sylib 122 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
17 oveq2 5877 . . . . . . . . . 10 (𝑒 = 𝑓 → (𝐿 + 𝑒) = (𝐿 + 𝑓))
1817breq2d 4012 . . . . . . . . 9 (𝑒 = 𝑓 → ((𝐹𝑘) < (𝐿 + 𝑒) ↔ (𝐹𝑘) < (𝐿 + 𝑓)))
19 oveq2 5877 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝐹𝑘) + 𝑒) = ((𝐹𝑘) + 𝑓))
2019breq2d 4012 . . . . . . . . 9 (𝑒 = 𝑓 → (𝐿 < ((𝐹𝑘) + 𝑒) ↔ 𝐿 < ((𝐹𝑘) + 𝑓)))
2118, 20anbi12d 473 . . . . . . . 8 (𝑒 = 𝑓 → (((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓))))
2221rexralbidv 2503 . . . . . . 7 (𝑒 = 𝑓 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓))))
2322cbvralv 2703 . . . . . 6 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
2416, 23sylib 122 . . . . 5 (𝜑 → ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
2524adantr 276 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
26 simpr 110 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
27 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
28 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
29 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
3027, 28, 29resqrexlemf 11000 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
3130adantr 276 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 𝐹:ℕ⟶ℝ+)
32 1nn 8919 . . . . . . . . . 10 1 ∈ ℕ
3332a1i 9 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℕ)
3431, 33ffvelcdmd 5648 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ+)
3534rpred 9683 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ)
36 resqrexlemgt0.rr . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
3736adantr 276 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝐿 ∈ ℝ)
3835, 37readdcld 7977 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1) + 𝐿) ∈ ℝ)
3934rpgt0d 9686 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 0 < (𝐹‘1))
4027, 28, 29, 36, 7resqrexlemgt0 11013 . . . . . . . 8 (𝜑 → 0 ≤ 𝐿)
4140adantr 276 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 0 ≤ 𝐿)
42 addgtge0 8397 . . . . . . 7 ((((𝐹‘1) ∈ ℝ ∧ 𝐿 ∈ ℝ) ∧ (0 < (𝐹‘1) ∧ 0 ≤ 𝐿)) → 0 < ((𝐹‘1) + 𝐿))
4335, 37, 39, 41, 42syl22anc 1239 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 0 < ((𝐹‘1) + 𝐿))
4438, 43elrpd 9680 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1) + 𝐿) ∈ ℝ+)
4526, 44rpdivcld 9701 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ+)
466, 25, 45rspcdva 2846 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))))
47 simpllr 534 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑗 ∈ ℕ)
48 simplr 528 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑘 ∈ (ℤ𝑗))
49 eluznn 9589 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
5047, 48, 49syl2anc 411 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑘 ∈ ℕ)
5131ad3antrrr 492 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐹:ℕ⟶ℝ+)
5251, 50ffvelcdmd 5648 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℝ+)
53 2z 9270 . . . . . . . . . . 11 2 ∈ ℤ
5453a1i 9 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 2 ∈ ℤ)
5552, 54rpexpcld 10663 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) ∈ ℝ+)
56 fveq2 5511 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
5756oveq1d 5884 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐹𝑥)↑2) = ((𝐹𝑘)↑2))
58 resqrexlemsqa.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
5957, 58fvmptg 5588 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ((𝐹𝑘)↑2) ∈ ℝ+) → (𝐺𝑘) = ((𝐹𝑘)↑2))
6050, 55, 59syl2anc 411 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) = ((𝐹𝑘)↑2))
6152rpred 9683 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℝ)
6261recnd 7976 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℂ)
6337ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ∈ ℝ)
6463recnd 7976 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ∈ ℂ)
65 subsq 10612 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℂ ∧ 𝐿 ∈ ℂ) → (((𝐹𝑘)↑2) − (𝐿↑2)) = (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)))
6662, 64, 65syl2anc 411 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘)↑2) − (𝐿↑2)) = (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)))
6761, 63readdcld 7977 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) + 𝐿) ∈ ℝ)
6861, 63resubcld 8328 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) − 𝐿) ∈ ℝ)
6967, 68remulcld 7978 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) ∈ ℝ)
7038ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹‘1) + 𝐿) ∈ ℝ)
7170, 68remulcld 7978 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) ∈ ℝ)
7226ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑒 ∈ ℝ+)
7372rpred 9683 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑒 ∈ ℝ)
7428ad4antr 494 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐴 ∈ ℝ)
7529ad4antr 494 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ 𝐴)
767ad4antr 494 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
7727, 74, 75, 63, 76, 50resqrexlemoverl 11014 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ≤ (𝐹𝑘))
7861, 63subge0d 8482 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (0 ≤ ((𝐹𝑘) − 𝐿) ↔ 𝐿 ≤ (𝐹𝑘)))
7977, 78mpbird 167 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ ((𝐹𝑘) − 𝐿))
80 fveq2 5511 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
8180oveq1d 5884 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((𝐹𝑘) + 𝐿) = ((𝐹‘1) + 𝐿))
82 eqle 8039 . . . . . . . . . . . . . 14 ((((𝐹𝑘) + 𝐿) ∈ ℝ ∧ ((𝐹𝑘) + 𝐿) = ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
8367, 81, 82syl2an 289 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 𝑘 = 1) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
8461adantr 276 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) ∈ ℝ)
8535ad4antr 494 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹‘1) ∈ ℝ)
8663adantr 276 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝐿 ∈ ℝ)
8728ad5antr 496 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝐴 ∈ ℝ)
8829ad5antr 496 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 0 ≤ 𝐴)
8932a1i 9 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 1 ∈ ℕ)
9050adantr 276 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝑘 ∈ ℕ)
91 simpr 110 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 1 < 𝑘)
9227, 87, 88, 89, 90, 91resqrexlemdecn 11005 . . . . . . . . . . . . . . 15 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) < (𝐹‘1))
9384, 85, 92ltled 8066 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) ≤ (𝐹‘1))
9484, 85, 86, 93leadd1dd 8506 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
95 nn1gt1 8942 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 = 1 ∨ 1 < 𝑘))
9650, 95syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑘 = 1 ∨ 1 < 𝑘))
9783, 94, 96mpjaodan 798 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
9867, 70, 68, 79, 97lemul1ad 8885 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) ≤ (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)))
99 simprl 529 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))))
10045ad3antrrr 492 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ+)
101100rpred 9683 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ)
10261, 63, 101ltsubadd2d 8490 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿)) ↔ (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿)))))
10399, 102mpbird 167 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿)))
10444ad3antrrr 492 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹‘1) + 𝐿) ∈ ℝ+)
10568, 73, 104ltmuldiv2d 9732 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒 ↔ ((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿))))
106103, 105mpbird 167 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒)
10769, 71, 73, 98, 106lelttrd 8072 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒)
10866, 107eqbrtrd 4022 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘)↑2) − (𝐿↑2)) < 𝑒)
10961resqcld 10665 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) ∈ ℝ)
11063resqcld 10665 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ∈ ℝ)
111109, 110, 73ltsubadd2d 8490 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((((𝐹𝑘)↑2) − (𝐿↑2)) < 𝑒 ↔ ((𝐹𝑘)↑2) < ((𝐿↑2) + 𝑒)))
112108, 111mpbid 147 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) < ((𝐿↑2) + 𝑒))
11360, 112eqbrtrd 4022 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) < ((𝐿↑2) + 𝑒))
11460, 109eqeltrd 2254 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) ∈ ℝ)
115114, 73readdcld 7977 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐺𝑘) + 𝑒) ∈ ℝ)
11641ad3antrrr 492 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ 𝐿)
117 le2sq2 10581 . . . . . . . . . 10 (((𝐿 ∈ ℝ ∧ 0 ≤ 𝐿) ∧ ((𝐹𝑘) ∈ ℝ ∧ 𝐿 ≤ (𝐹𝑘))) → (𝐿↑2) ≤ ((𝐹𝑘)↑2))
11863, 116, 61, 77, 117syl22anc 1239 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ≤ ((𝐹𝑘)↑2))
119118, 60breqtrrd 4028 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ≤ (𝐺𝑘))
120114, 72ltaddrpd 9717 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) < ((𝐺𝑘) + 𝑒))
121110, 114, 115, 119, 120lelttrd 8072 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) < ((𝐺𝑘) + 𝑒))
122113, 121jca 306 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
123122ex 115 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
124123ralimdva 2544 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
125124reximdva 2579 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
12646, 125mpd 13 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
127126ralrimiva 2550 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {csn 3591   class class class wbr 4000  cmpt 4061   × cxp 4621  wf 5208  cfv 5212  (class class class)co 5869  cmpo 5871  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  cn 8908  2c2 8959  cz 9242  cuz 9517  +crp 9640  seqcseq 10431  cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  resqrexlemsqa  11017
  Copyright terms: Public domain W3C validator