ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcncf GIF version

Theorem mulcncf 12503
Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
mulcncf.1 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
mulcncf.2 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
mulcncf (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mulcncf
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑓 𝑔 𝑠 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcncf.1 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 12477 . . . . . . 7 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 14 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
4 eqid 2100 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
54fmpt 5502 . . . . . 6 (∀𝑥𝑋 𝐴 ∈ ℂ ↔ (𝑥𝑋𝐴):𝑋⟶ℂ)
63, 5sylibr 133 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐴 ∈ ℂ)
76r19.21bi 2479 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
8 mulcncf.2 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
9 cncff 12477 . . . . . . 7 ((𝑥𝑋𝐵) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐵):𝑋⟶ℂ)
108, 9syl 14 . . . . . 6 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℂ)
11 eqid 2100 . . . . . . 7 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
1211fmpt 5502 . . . . . 6 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
1310, 12sylibr 133 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵 ∈ ℂ)
1413r19.21bi 2479 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
157, 14mulcld 7658 . . 3 ((𝜑𝑥𝑋) → (𝐴 · 𝐵) ∈ ℂ)
1615fmpttd 5507 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)):𝑋⟶ℂ)
17 simpr 109 . . . . . 6 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
18 simplr 500 . . . . . . 7 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → 𝑣𝑋)
196ad2antrr 475 . . . . . . 7 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → ∀𝑥𝑋 𝐴 ∈ ℂ)
20 rspcsbela 3009 . . . . . . 7 ((𝑣𝑋 ∧ ∀𝑥𝑋 𝐴 ∈ ℂ) → 𝑣 / 𝑥𝐴 ∈ ℂ)
2118, 19, 20syl2anc 406 . . . . . 6 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → 𝑣 / 𝑥𝐴 ∈ ℂ)
2213ad2antrr 475 . . . . . . 7 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → ∀𝑥𝑋 𝐵 ∈ ℂ)
23 rspcsbela 3009 . . . . . . 7 ((𝑣𝑋 ∧ ∀𝑥𝑋 𝐵 ∈ ℂ) → 𝑣 / 𝑥𝐵 ∈ ℂ)
2418, 22, 23syl2anc 406 . . . . . 6 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → 𝑣 / 𝑥𝐵 ∈ ℂ)
25 mulcn2 10920 . . . . . 6 ((𝑒 ∈ ℝ+𝑣 / 𝑥𝐴 ∈ ℂ ∧ 𝑣 / 𝑥𝐵 ∈ ℂ) → ∃𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
2617, 21, 24, 25syl3anc 1184 . . . . 5 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → ∃𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
271ad3antrrr 479 . . . . . . . 8 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
28 simpr 109 . . . . . . . . 9 ((𝜑𝑣𝑋) → 𝑣𝑋)
2928ad2antrr 475 . . . . . . . 8 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → 𝑣𝑋)
30 simprl 501 . . . . . . . 8 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → 𝑓 ∈ ℝ+)
31 cncfi 12478 . . . . . . . 8 (((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) ∧ 𝑣𝑋𝑓 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
3227, 29, 30, 31syl3anc 1184 . . . . . . 7 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
338ad3antrrr 479 . . . . . . . . . 10 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
34 simprr 502 . . . . . . . . . 10 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → 𝑔 ∈ ℝ+)
35 cncfi 12478 . . . . . . . . . 10 (((𝑥𝑋𝐵) ∈ (𝑋cn→ℂ) ∧ 𝑣𝑋𝑔 ∈ ℝ+) → ∃𝑡 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
3633, 29, 34, 35syl3anc 1184 . . . . . . . . 9 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → ∃𝑡 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
3736adantr 272 . . . . . . . 8 (((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) → ∃𝑡 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
3827ad3antrrr 479 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
3933ad3antrrr 479 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
4029ad3antrrr 479 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑣𝑋)
41 simp-5r 514 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑒 ∈ ℝ+)
4230ad3antrrr 479 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑓 ∈ ℝ+)
4334ad3antrrr 479 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑔 ∈ ℝ+)
44 simprl 501 . . . . . . . . . . 11 (((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) → 𝑠 ∈ ℝ+)
4544ad2antrr 475 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑠 ∈ ℝ+)
46 simplrl 505 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑡 ∈ ℝ+)
47 simprr 502 . . . . . . . . . . 11 (((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) → ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
4847ad2antrr 475 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
49 simplrr 506 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
50 nfv 1476 . . . . . . . . . . . . . 14 𝑢(((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+))
51 nfv 1476 . . . . . . . . . . . . . . 15 𝑢 𝑠 ∈ ℝ+
52 nfra1 2425 . . . . . . . . . . . . . . 15 𝑢𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓)
5351, 52nfan 1512 . . . . . . . . . . . . . 14 𝑢(𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
5450, 53nfan 1512 . . . . . . . . . . . . 13 𝑢((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓)))
55 nfv 1476 . . . . . . . . . . . . . 14 𝑢 𝑡 ∈ ℝ+
56 nfra1 2425 . . . . . . . . . . . . . 14 𝑢𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔)
5755, 56nfan 1512 . . . . . . . . . . . . 13 𝑢(𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
5854, 57nfan 1512 . . . . . . . . . . . 12 𝑢(((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔)))
59 nfv 1476 . . . . . . . . . . . 12 𝑢𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)
6058, 59nfan 1512 . . . . . . . . . . 11 𝑢((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
61 simpr 109 . . . . . . . . . . . . . 14 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → 𝑢𝑋)
6219ad5antr 483 . . . . . . . . . . . . . 14 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → ∀𝑥𝑋 𝐴 ∈ ℂ)
63 rspcsbela 3009 . . . . . . . . . . . . . 14 ((𝑢𝑋 ∧ ∀𝑥𝑋 𝐴 ∈ ℂ) → 𝑢 / 𝑥𝐴 ∈ ℂ)
6461, 62, 63syl2anc 406 . . . . . . . . . . . . 13 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → 𝑢 / 𝑥𝐴 ∈ ℂ)
6522ad5antr 483 . . . . . . . . . . . . . 14 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → ∀𝑥𝑋 𝐵 ∈ ℂ)
66 rspcsbela 3009 . . . . . . . . . . . . . 14 ((𝑢𝑋 ∧ ∀𝑥𝑋 𝐵 ∈ ℂ) → 𝑢 / 𝑥𝐵 ∈ ℂ)
6761, 65, 66syl2anc 406 . . . . . . . . . . . . 13 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → 𝑢 / 𝑥𝐵 ∈ ℂ)
68 simplr 500 . . . . . . . . . . . . 13 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
69 fvoveq1 5729 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑢 / 𝑥𝐴 → (abs‘(𝑎𝑣 / 𝑥𝐴)) = (abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)))
7069breq1d 3885 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑢 / 𝑥𝐴 → ((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ↔ (abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓))
7170anbi1d 456 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 / 𝑥𝐴 → (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) ↔ ((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔)))
72 oveq1 5713 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑢 / 𝑥𝐴 → (𝑎 · 𝑏) = (𝑢 / 𝑥𝐴 · 𝑏))
7372fvoveq1d 5728 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑢 / 𝑥𝐴 → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) = (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))))
7473breq1d 3885 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 / 𝑥𝐴 → ((abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒 ↔ (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
7571, 74imbi12d 233 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 / 𝑥𝐴 → ((((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) ↔ (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)))
76 fvoveq1 5729 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑢 / 𝑥𝐵 → (abs‘(𝑏𝑣 / 𝑥𝐵)) = (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)))
7776breq1d 3885 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑢 / 𝑥𝐵 → ((abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔 ↔ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔))
7877anbi2d 455 . . . . . . . . . . . . . . 15 (𝑏 = 𝑢 / 𝑥𝐵 → (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) ↔ ((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔)))
79 oveq2 5714 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑢 / 𝑥𝐵 → (𝑢 / 𝑥𝐴 · 𝑏) = (𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵))
8079fvoveq1d 5728 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑢 / 𝑥𝐵 → (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) = (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))))
8180breq1d 3885 . . . . . . . . . . . . . . 15 (𝑏 = 𝑢 / 𝑥𝐵 → ((abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒 ↔ (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
8278, 81imbi12d 233 . . . . . . . . . . . . . 14 (𝑏 = 𝑢 / 𝑥𝐵 → ((((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) ↔ (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)))
8375, 82rspc2va 2757 . . . . . . . . . . . . 13 (((𝑢 / 𝑥𝐴 ∈ ℂ ∧ 𝑢 / 𝑥𝐵 ∈ ℂ) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
8464, 67, 68, 83syl21anc 1183 . . . . . . . . . . . 12 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
8584ex 114 . . . . . . . . . . 11 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → (𝑢𝑋 → (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)))
8660, 85ralrimi 2462 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → ∀𝑢𝑋 (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
8738, 39, 40, 41, 42, 43, 45, 46, 48, 49, 86mulcncflem 12502 . . . . . . . . 9 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))
8887ex 114 . . . . . . . 8 ((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) → (∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒)))
8937, 88rexlimddv 2513 . . . . . . 7 (((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) → (∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒)))
9032, 89rexlimddv 2513 . . . . . 6 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → (∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒)))
9190rexlimdvva 2516 . . . . 5 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → (∃𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒)))
9226, 91mpd 13 . . . 4 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))
9392ralrimiva 2464 . . 3 ((𝜑𝑣𝑋) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))
9493ralrimiva 2464 . 2 (𝜑 → ∀𝑣𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))
95 cncfrss 12475 . . . 4 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → 𝑋 ⊆ ℂ)
961, 95syl 14 . . 3 (𝜑𝑋 ⊆ ℂ)
97 ssidd 3068 . . 3 (𝜑 → ℂ ⊆ ℂ)
98 elcncf2 12474 . . 3 ((𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ) ↔ ((𝑥𝑋 ↦ (𝐴 · 𝐵)):𝑋⟶ℂ ∧ ∀𝑣𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))))
9996, 97, 98syl2anc 406 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ) ↔ ((𝑥𝑋 ↦ (𝐴 · 𝐵)):𝑋⟶ℂ ∧ ∀𝑣𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))))
10016, 94, 99mpbir2and 896 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  wral 2375  wrex 2376  csb 2955  wss 3021   class class class wbr 3875  cmpt 3929  wf 5055  cfv 5059  (class class class)co 5706  cc 7498   · cmul 7505   < clt 7672  cmin 7804  +crp 9291  abscabs 10609  cnccncf 12470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-map 6474  df-sup 6786  df-inf 6787  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-cncf 12471
This theorem is referenced by:  expcncf  12504
  Copyright terms: Public domain W3C validator