Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcncf GIF version

Theorem mulcncf 12800
 Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
mulcncf.1 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
mulcncf.2 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
mulcncf (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mulcncf
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑓 𝑔 𝑠 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcncf.1 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 12773 . . . . . . 7 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 14 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
4 eqid 2140 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
54fmpt 5578 . . . . . 6 (∀𝑥𝑋 𝐴 ∈ ℂ ↔ (𝑥𝑋𝐴):𝑋⟶ℂ)
63, 5sylibr 133 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐴 ∈ ℂ)
76r19.21bi 2523 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
8 mulcncf.2 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
9 cncff 12773 . . . . . . 7 ((𝑥𝑋𝐵) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐵):𝑋⟶ℂ)
108, 9syl 14 . . . . . 6 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℂ)
11 eqid 2140 . . . . . . 7 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
1211fmpt 5578 . . . . . 6 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
1310, 12sylibr 133 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵 ∈ ℂ)
1413r19.21bi 2523 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
157, 14mulcld 7811 . . 3 ((𝜑𝑥𝑋) → (𝐴 · 𝐵) ∈ ℂ)
1615fmpttd 5583 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)):𝑋⟶ℂ)
17 simpr 109 . . . . . 6 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
18 simplr 520 . . . . . . 7 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → 𝑣𝑋)
196ad2antrr 480 . . . . . . 7 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → ∀𝑥𝑋 𝐴 ∈ ℂ)
20 rspcsbela 3064 . . . . . . 7 ((𝑣𝑋 ∧ ∀𝑥𝑋 𝐴 ∈ ℂ) → 𝑣 / 𝑥𝐴 ∈ ℂ)
2118, 19, 20syl2anc 409 . . . . . 6 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → 𝑣 / 𝑥𝐴 ∈ ℂ)
2213ad2antrr 480 . . . . . . 7 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → ∀𝑥𝑋 𝐵 ∈ ℂ)
23 rspcsbela 3064 . . . . . . 7 ((𝑣𝑋 ∧ ∀𝑥𝑋 𝐵 ∈ ℂ) → 𝑣 / 𝑥𝐵 ∈ ℂ)
2418, 22, 23syl2anc 409 . . . . . 6 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → 𝑣 / 𝑥𝐵 ∈ ℂ)
25 mulcn2 11114 . . . . . 6 ((𝑒 ∈ ℝ+𝑣 / 𝑥𝐴 ∈ ℂ ∧ 𝑣 / 𝑥𝐵 ∈ ℂ) → ∃𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
2617, 21, 24, 25syl3anc 1217 . . . . 5 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → ∃𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
271ad3antrrr 484 . . . . . . . 8 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
28 simpr 109 . . . . . . . . 9 ((𝜑𝑣𝑋) → 𝑣𝑋)
2928ad2antrr 480 . . . . . . . 8 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → 𝑣𝑋)
30 simprl 521 . . . . . . . 8 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → 𝑓 ∈ ℝ+)
31 cncfi 12774 . . . . . . . 8 (((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) ∧ 𝑣𝑋𝑓 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
3227, 29, 30, 31syl3anc 1217 . . . . . . 7 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
338ad3antrrr 484 . . . . . . . . . 10 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
34 simprr 522 . . . . . . . . . 10 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → 𝑔 ∈ ℝ+)
35 cncfi 12774 . . . . . . . . . 10 (((𝑥𝑋𝐵) ∈ (𝑋cn→ℂ) ∧ 𝑣𝑋𝑔 ∈ ℝ+) → ∃𝑡 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
3633, 29, 34, 35syl3anc 1217 . . . . . . . . 9 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → ∃𝑡 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
3736adantr 274 . . . . . . . 8 (((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) → ∃𝑡 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
3827ad3antrrr 484 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
3933ad3antrrr 484 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
4029ad3antrrr 484 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑣𝑋)
41 simp-5r 534 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑒 ∈ ℝ+)
4230ad3antrrr 484 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑓 ∈ ℝ+)
4334ad3antrrr 484 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑔 ∈ ℝ+)
44 simprl 521 . . . . . . . . . . 11 (((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) → 𝑠 ∈ ℝ+)
4544ad2antrr 480 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑠 ∈ ℝ+)
46 simplrl 525 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → 𝑡 ∈ ℝ+)
47 simprr 522 . . . . . . . . . . 11 (((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) → ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
4847ad2antrr 480 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
49 simplrr 526 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
50 nfv 1509 . . . . . . . . . . . . . 14 𝑢(((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+))
51 nfv 1509 . . . . . . . . . . . . . . 15 𝑢 𝑠 ∈ ℝ+
52 nfra1 2469 . . . . . . . . . . . . . . 15 𝑢𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓)
5351, 52nfan 1545 . . . . . . . . . . . . . 14 𝑢(𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))
5450, 53nfan 1545 . . . . . . . . . . . . 13 𝑢((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓)))
55 nfv 1509 . . . . . . . . . . . . . 14 𝑢 𝑡 ∈ ℝ+
56 nfra1 2469 . . . . . . . . . . . . . 14 𝑢𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔)
5755, 56nfan 1545 . . . . . . . . . . . . 13 𝑢(𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))
5854, 57nfan 1545 . . . . . . . . . . . 12 𝑢(((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔)))
59 nfv 1509 . . . . . . . . . . . 12 𝑢𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)
6058, 59nfan 1545 . . . . . . . . . . 11 𝑢((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
61 simpr 109 . . . . . . . . . . . . . 14 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → 𝑢𝑋)
6219ad5antr 488 . . . . . . . . . . . . . 14 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → ∀𝑥𝑋 𝐴 ∈ ℂ)
63 rspcsbela 3064 . . . . . . . . . . . . . 14 ((𝑢𝑋 ∧ ∀𝑥𝑋 𝐴 ∈ ℂ) → 𝑢 / 𝑥𝐴 ∈ ℂ)
6461, 62, 63syl2anc 409 . . . . . . . . . . . . 13 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → 𝑢 / 𝑥𝐴 ∈ ℂ)
6522ad5antr 488 . . . . . . . . . . . . . 14 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → ∀𝑥𝑋 𝐵 ∈ ℂ)
66 rspcsbela 3064 . . . . . . . . . . . . . 14 ((𝑢𝑋 ∧ ∀𝑥𝑋 𝐵 ∈ ℂ) → 𝑢 / 𝑥𝐵 ∈ ℂ)
6761, 65, 66syl2anc 409 . . . . . . . . . . . . 13 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → 𝑢 / 𝑥𝐵 ∈ ℂ)
68 simplr 520 . . . . . . . . . . . . 13 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
69 fvoveq1 5805 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑢 / 𝑥𝐴 → (abs‘(𝑎𝑣 / 𝑥𝐴)) = (abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)))
7069breq1d 3947 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑢 / 𝑥𝐴 → ((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ↔ (abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓))
7170anbi1d 461 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 / 𝑥𝐴 → (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) ↔ ((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔)))
72 oveq1 5789 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑢 / 𝑥𝐴 → (𝑎 · 𝑏) = (𝑢 / 𝑥𝐴 · 𝑏))
7372fvoveq1d 5804 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑢 / 𝑥𝐴 → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) = (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))))
7473breq1d 3947 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 / 𝑥𝐴 → ((abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒 ↔ (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
7571, 74imbi12d 233 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 / 𝑥𝐴 → ((((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) ↔ (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)))
76 fvoveq1 5805 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑢 / 𝑥𝐵 → (abs‘(𝑏𝑣 / 𝑥𝐵)) = (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)))
7776breq1d 3947 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑢 / 𝑥𝐵 → ((abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔 ↔ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔))
7877anbi2d 460 . . . . . . . . . . . . . . 15 (𝑏 = 𝑢 / 𝑥𝐵 → (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) ↔ ((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔)))
79 oveq2 5790 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑢 / 𝑥𝐵 → (𝑢 / 𝑥𝐴 · 𝑏) = (𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵))
8079fvoveq1d 5804 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑢 / 𝑥𝐵 → (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) = (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))))
8180breq1d 3947 . . . . . . . . . . . . . . 15 (𝑏 = 𝑢 / 𝑥𝐵 → ((abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒 ↔ (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
8278, 81imbi12d 233 . . . . . . . . . . . . . 14 (𝑏 = 𝑢 / 𝑥𝐵 → ((((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) ↔ (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)))
8375, 82rspc2va 2807 . . . . . . . . . . . . 13 (((𝑢 / 𝑥𝐴 ∈ ℂ ∧ 𝑢 / 𝑥𝐵 ∈ ℂ) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
8464, 67, 68, 83syl21anc 1216 . . . . . . . . . . . 12 ((((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) ∧ 𝑢𝑋) → (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
8584ex 114 . . . . . . . . . . 11 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → (𝑢𝑋 → (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)))
8660, 85ralrimi 2506 . . . . . . . . . 10 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → ∀𝑢𝑋 (((abs‘(𝑢 / 𝑥𝐴𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑢 / 𝑥𝐵𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒))
8738, 39, 40, 41, 42, 43, 45, 46, 48, 49, 86mulcncflem 12799 . . . . . . . . 9 (((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) ∧ ∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))
8887ex 114 . . . . . . . 8 ((((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑡 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑣))) < 𝑔))) → (∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒)))
8937, 88rexlimddv 2557 . . . . . . 7 (((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑠 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑣))) < 𝑓))) → (∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒)))
9032, 89rexlimddv 2557 . . . . . 6 ((((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) ∧ (𝑓 ∈ ℝ+𝑔 ∈ ℝ+)) → (∀𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒)))
9190rexlimdvva 2560 . . . . 5 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → (∃𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑎 ∈ ℂ ∀𝑏 ∈ ℂ (((abs‘(𝑎𝑣 / 𝑥𝐴)) < 𝑓 ∧ (abs‘(𝑏𝑣 / 𝑥𝐵)) < 𝑔) → (abs‘((𝑎 · 𝑏) − (𝑣 / 𝑥𝐴 · 𝑣 / 𝑥𝐵))) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒)))
9226, 91mpd 13 . . . 4 (((𝜑𝑣𝑋) ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))
9392ralrimiva 2508 . . 3 ((𝜑𝑣𝑋) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))
9493ralrimiva 2508 . 2 (𝜑 → ∀𝑣𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))
95 cncfrss 12771 . . . 4 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → 𝑋 ⊆ ℂ)
961, 95syl 14 . . 3 (𝜑𝑋 ⊆ ℂ)
97 ssidd 3123 . . 3 (𝜑 → ℂ ⊆ ℂ)
98 elcncf2 12770 . . 3 ((𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ) ↔ ((𝑥𝑋 ↦ (𝐴 · 𝐵)):𝑋⟶ℂ ∧ ∀𝑣𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))))
9996, 97, 98syl2anc 409 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ) ↔ ((𝑥𝑋 ↦ (𝐴 · 𝐵)):𝑋⟶ℂ ∧ ∀𝑣𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑣)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑣))) < 𝑒))))
10016, 94, 99mpbir2and 929 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418  ⦋csb 3007   ⊆ wss 3076   class class class wbr 3937   ↦ cmpt 3997  ⟶wf 5127  ‘cfv 5131  (class class class)co 5782  ℂcc 7643   · cmul 7650   < clt 7825   − cmin 7958  ℝ+crp 9471  abscabs 10802  –cn→ccncf 12766 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7736  ax-resscn 7737  ax-1cn 7738  ax-1re 7739  ax-icn 7740  ax-addcl 7741  ax-addrcl 7742  ax-mulcl 7743  ax-mulrcl 7744  ax-addcom 7745  ax-mulcom 7746  ax-addass 7747  ax-mulass 7748  ax-distr 7749  ax-i2m1 7750  ax-0lt1 7751  ax-1rid 7752  ax-0id 7753  ax-rnegex 7754  ax-precex 7755  ax-cnre 7756  ax-pre-ltirr 7757  ax-pre-ltwlin 7758  ax-pre-lttrn 7759  ax-pre-apti 7760  ax-pre-ltadd 7761  ax-pre-mulgt0 7762  ax-pre-mulext 7763  ax-arch 7764  ax-caucvg 7765 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-map 6552  df-sup 6879  df-inf 6880  df-pnf 7827  df-mnf 7828  df-xr 7829  df-ltxr 7830  df-le 7831  df-sub 7960  df-neg 7961  df-reap 8362  df-ap 8369  df-div 8458  df-inn 8746  df-2 8804  df-3 8805  df-4 8806  df-n0 9003  df-z 9080  df-uz 9352  df-rp 9472  df-seqfrec 10251  df-exp 10325  df-cj 10647  df-re 10648  df-im 10649  df-rsqrt 10803  df-abs 10804  df-cncf 12767 This theorem is referenced by:  expcncf  12801
 Copyright terms: Public domain W3C validator