ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resoprab GIF version

Theorem resoprab 5991
Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
resoprab ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem resoprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 resopab 4969 . . 3 ({⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↾ (𝐴 × 𝐵)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
2 19.42vv 1923 . . . . 5 (∃𝑥𝑦(𝑤 ∈ (𝐴 × 𝐵) ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑤 ∈ (𝐴 × 𝐵) ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
3 an12 561 . . . . . . 7 ((𝑤 ∈ (𝐴 × 𝐵) ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)))
4 eleq1 2252 . . . . . . . . . 10 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
5 opelxp 4674 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
64, 5bitrdi 196 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
76anbi1d 465 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
87pm5.32i 454 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
93, 8bitri 184 . . . . . 6 ((𝑤 ∈ (𝐴 × 𝐵) ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
1092exbii 1617 . . . . 5 (∃𝑥𝑦(𝑤 ∈ (𝐴 × 𝐵) ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
112, 10bitr3i 186 . . . 4 ((𝑤 ∈ (𝐴 × 𝐵) ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
1211opabbii 4085 . . 3 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))}
131, 12eqtri 2210 . 2 ({⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↾ (𝐴 × 𝐵)) = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))}
14 dfoprab2 5942 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
1514reseq1i 4921 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = ({⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↾ (𝐴 × 𝐵))
16 dfoprab2 5942 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))}
1713, 15, 163eqtr4i 2220 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2160  cop 3610  {copab 4078   × cxp 4642  cres 4646  {coprab 5896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080  df-xp 4650  df-rel 4651  df-res 4656  df-oprab 5899
This theorem is referenced by:  resoprab2  5992
  Copyright terms: Public domain W3C validator