ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2clim GIF version

Theorem 2clim 11444
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
2clim.2 (𝜑𝑀 ∈ ℤ)
2clim.3 (𝜑𝐺𝑉)
2clim.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2clim.6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2clim.7 (𝜑𝐹𝐴)
Assertion
Ref Expression
2clim (𝜑𝐺𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝑥,𝑗,𝐹,𝑘   𝑗,𝐺,𝑥   𝑗,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘,𝑥   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem 2clim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2 rphalfcl 9747 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
3 breq2 4033 . . . . . . . 8 (𝑥 = (𝑦 / 2) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
43rexralbidv 2520 . . . . . . 7 (𝑥 = (𝑦 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
54rspccva 2863 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
61, 2, 5syl2an 289 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
7 2clim.1 . . . . . 6 𝑍 = (ℤ𝑀)
8 2clim.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
98adantr 276 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
102adantl 277 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
11 eqidd 2194 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
12 2clim.7 . . . . . . 7 (𝜑𝐹𝐴)
1312adantr 276 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝐴)
147, 9, 10, 11, 13climi 11430 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)))
157rexanuz2 11135 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
166, 14, 15sylanbrc 417 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
177uztrn2 9610 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 an12 561 . . . . . . . . 9 (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ ((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
19 simprr 531 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐹𝑘) ∈ ℂ)
20 2clim.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2120ad2ant2r 509 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐺𝑘) ∈ ℂ)
2219, 21abssubd 11337 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (abs‘((𝐹𝑘) − (𝐺𝑘))) = (abs‘((𝐺𝑘) − (𝐹𝑘))))
2322breq1d 4039 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ↔ (abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2)))
2423anbi1d 465 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) ↔ ((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
25 climcl 11425 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2612, 25syl 14 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
2726ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝐴 ∈ ℂ)
28 rpre 9726 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
2928ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝑦 ∈ ℝ)
30 abs3lem 11255 . . . . . . . . . . . . 13 ((((𝐺𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ 𝑦 ∈ ℝ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3121, 27, 19, 29, 30syl22anc 1250 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3224, 31sylbid 150 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3332anassrs 400 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3433expimpd 363 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3518, 34biimtrid 152 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3617, 35sylan2 286 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3736anassrs 400 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3837ralimdva 2561 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3938reximdva 2596 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4016, 39mpd 13 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
4140ralrimiva 2567 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
42 2clim.3 . . 3 (𝜑𝐺𝑉)
43 eqidd 2194 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
447, 8, 42, 43, 26, 20clim2c 11427 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4541, 44mpbird 167 1 (𝜑𝐺𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wrex 2473   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871   < clt 8054  cmin 8190   / cdiv 8691  2c2 9033  cz 9317  cuz 9592  +crp 9719  abscabs 11141  cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422
This theorem is referenced by:  mertensabs  11680
  Copyright terms: Public domain W3C validator