ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2clim GIF version

Theorem 2clim 11682
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
2clim.2 (𝜑𝑀 ∈ ℤ)
2clim.3 (𝜑𝐺𝑉)
2clim.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2clim.6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2clim.7 (𝜑𝐹𝐴)
Assertion
Ref Expression
2clim (𝜑𝐺𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝑥,𝑗,𝐹,𝑘   𝑗,𝐺,𝑥   𝑗,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘,𝑥   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem 2clim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2 rphalfcl 9818 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
3 breq2 4054 . . . . . . . 8 (𝑥 = (𝑦 / 2) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
43rexralbidv 2533 . . . . . . 7 (𝑥 = (𝑦 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
54rspccva 2880 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
61, 2, 5syl2an 289 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
7 2clim.1 . . . . . 6 𝑍 = (ℤ𝑀)
8 2clim.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
98adantr 276 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
102adantl 277 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
11 eqidd 2207 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
12 2clim.7 . . . . . . 7 (𝜑𝐹𝐴)
1312adantr 276 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝐴)
147, 9, 10, 11, 13climi 11668 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)))
157rexanuz2 11372 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
166, 14, 15sylanbrc 417 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
177uztrn2 9681 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 an12 561 . . . . . . . . 9 (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ ((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
19 simprr 531 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐹𝑘) ∈ ℂ)
20 2clim.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2120ad2ant2r 509 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐺𝑘) ∈ ℂ)
2219, 21abssubd 11574 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (abs‘((𝐹𝑘) − (𝐺𝑘))) = (abs‘((𝐺𝑘) − (𝐹𝑘))))
2322breq1d 4060 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ↔ (abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2)))
2423anbi1d 465 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) ↔ ((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
25 climcl 11663 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2612, 25syl 14 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
2726ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝐴 ∈ ℂ)
28 rpre 9797 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
2928ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝑦 ∈ ℝ)
30 abs3lem 11492 . . . . . . . . . . . . 13 ((((𝐺𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ 𝑦 ∈ ℝ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3121, 27, 19, 29, 30syl22anc 1251 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3224, 31sylbid 150 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3332anassrs 400 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3433expimpd 363 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3518, 34biimtrid 152 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3617, 35sylan2 286 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3736anassrs 400 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3837ralimdva 2574 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3938reximdva 2609 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4016, 39mpd 13 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
4140ralrimiva 2580 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
42 2clim.3 . . 3 (𝜑𝐺𝑉)
43 eqidd 2207 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
447, 8, 42, 43, 26, 20clim2c 11665 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4541, 44mpbird 167 1 (𝜑𝐺𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  wrex 2486   class class class wbr 4050  cfv 5279  (class class class)co 5956  cc 7938  cr 7939   < clt 8122  cmin 8258   / cdiv 8760  2c2 9102  cz 9387  cuz 9663  +crp 9790  abscabs 11378  cli 11659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-rp 9791  df-seqfrec 10610  df-exp 10701  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-clim 11660
This theorem is referenced by:  mertensabs  11918
  Copyright terms: Public domain W3C validator