ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval2 GIF version

Theorem tgval2 14598
Description: Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 14611) that (topGen‘𝐵) is indeed a topology (on 𝐵, see unitg 14609). See also tgval 13169 and tgval3 14605. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval2 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑉,𝑦,𝑧

Proof of Theorem tgval2
StepHypRef Expression
1 tgval 13169 . 2 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
2 inss1 3397 . . . . . . . . 9 (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵
32unissi 3879 . . . . . . . 8 (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵
43sseli 3193 . . . . . . 7 (𝑦 (𝐵 ∩ 𝒫 𝑥) → 𝑦 𝐵)
54pm4.71ri 392 . . . . . 6 (𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ (𝑦 𝐵𝑦 (𝐵 ∩ 𝒫 𝑥)))
65ralbii 2513 . . . . 5 (∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ ∀𝑦𝑥 (𝑦 𝐵𝑦 (𝐵 ∩ 𝒫 𝑥)))
7 r19.26 2633 . . . . 5 (∀𝑦𝑥 (𝑦 𝐵𝑦 (𝐵 ∩ 𝒫 𝑥)) ↔ (∀𝑦𝑥 𝑦 𝐵 ∧ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥)))
86, 7bitri 184 . . . 4 (∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ (∀𝑦𝑥 𝑦 𝐵 ∧ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥)))
9 dfss3 3186 . . . 4 (𝑥 (𝐵 ∩ 𝒫 𝑥) ↔ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥))
10 dfss3 3186 . . . . 5 (𝑥 𝐵 ↔ ∀𝑦𝑥 𝑦 𝐵)
11 elin 3360 . . . . . . . . . . 11 (𝑧 ∈ (𝐵 ∩ 𝒫 𝑥) ↔ (𝑧𝐵𝑧 ∈ 𝒫 𝑥))
1211anbi2i 457 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ (𝑦𝑧 ∧ (𝑧𝐵𝑧 ∈ 𝒫 𝑥)))
13 an12 561 . . . . . . . . . 10 ((𝑦𝑧 ∧ (𝑧𝐵𝑧 ∈ 𝒫 𝑥)) ↔ (𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
1412, 13bitri 184 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ (𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
1514exbii 1629 . . . . . . . 8 (∃𝑧(𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ ∃𝑧(𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
16 eluni 3859 . . . . . . . 8 (𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ ∃𝑧(𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)))
17 df-rex 2491 . . . . . . . 8 (∃𝑧𝐵 (𝑦𝑧𝑧 ∈ 𝒫 𝑥) ↔ ∃𝑧(𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
1815, 16, 173bitr4i 212 . . . . . . 7 (𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ ∃𝑧𝐵 (𝑦𝑧𝑧 ∈ 𝒫 𝑥))
19 velpw 3628 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑥𝑧𝑥)
2019anbi2i 457 . . . . . . . 8 ((𝑦𝑧𝑧 ∈ 𝒫 𝑥) ↔ (𝑦𝑧𝑧𝑥))
2120rexbii 2514 . . . . . . 7 (∃𝑧𝐵 (𝑦𝑧𝑧 ∈ 𝒫 𝑥) ↔ ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
2218, 21bitr2i 185 . . . . . 6 (∃𝑧𝐵 (𝑦𝑧𝑧𝑥) ↔ 𝑦 (𝐵 ∩ 𝒫 𝑥))
2322ralbii 2513 . . . . 5 (∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥) ↔ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥))
2410, 23anbi12i 460 . . . 4 ((𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) ↔ (∀𝑦𝑥 𝑦 𝐵 ∧ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥)))
258, 9, 243bitr4i 212 . . 3 (𝑥 (𝐵 ∩ 𝒫 𝑥) ↔ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
2625abbii 2322 . 2 {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))}
271, 26eqtrdi 2255 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  {cab 2192  wral 2485  wrex 2486  cin 3169  wss 3170  𝒫 cpw 3621   cuni 3856  cfv 5280  topGenctg 13161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-topgen 13167
This theorem is referenced by:  eltg2  14600
  Copyright terms: Public domain W3C validator