ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemlol GIF version

Theorem recexprlemlol 7541
Description: The lower cut of 𝐵 is lower. Lemma for recexpr 7553. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemlol ((𝐴P𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemlol
StepHypRef Expression
1 ltsonq 7313 . . . . . . . . 9 <Q Or Q
2 ltrelnq 7280 . . . . . . . . 9 <Q ⊆ (Q × Q)
31, 2sotri 4980 . . . . . . . 8 ((𝑞 <Q 𝑟𝑟 <Q 𝑦) → 𝑞 <Q 𝑦)
43ex 114 . . . . . . 7 (𝑞 <Q 𝑟 → (𝑟 <Q 𝑦𝑞 <Q 𝑦))
54anim1d 334 . . . . . 6 (𝑞 <Q 𝑟 → ((𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
65eximdv 1860 . . . . 5 (𝑞 <Q 𝑟 → (∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
7 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
87recexprlemell 7537 . . . . 5 (𝑟 ∈ (1st𝐵) ↔ ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
97recexprlemell 7537 . . . . 5 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
106, 8, 93imtr4g 204 . . . 4 (𝑞 <Q 𝑟 → (𝑟 ∈ (1st𝐵) → 𝑞 ∈ (1st𝐵)))
1110imp 123 . . 3 ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵))
1211rexlimivw 2570 . 2 (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵))
1312a1i 9 1 ((𝐴P𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wex 1472  wcel 2128  {cab 2143  wrex 2436  cop 3563   class class class wbr 3965  cfv 5169  1st c1st 6083  2nd c2nd 6084  Qcnq 7195  *Qcrq 7199   <Q cltq 7200  Pcnp 7206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-oadd 6364  df-omul 6365  df-er 6477  df-ec 6479  df-qs 6483  df-ni 7219  df-mi 7221  df-lti 7222  df-enq 7262  df-nqqs 7263  df-ltnqqs 7268
This theorem is referenced by:  recexprlemrnd  7544
  Copyright terms: Public domain W3C validator