ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemlol GIF version

Theorem recexprlemlol 7688
Description: The lower cut of 𝐵 is lower. Lemma for recexpr 7700. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemlol ((𝐴P𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemlol
StepHypRef Expression
1 ltsonq 7460 . . . . . . . . 9 <Q Or Q
2 ltrelnq 7427 . . . . . . . . 9 <Q ⊆ (Q × Q)
31, 2sotri 5062 . . . . . . . 8 ((𝑞 <Q 𝑟𝑟 <Q 𝑦) → 𝑞 <Q 𝑦)
43ex 115 . . . . . . 7 (𝑞 <Q 𝑟 → (𝑟 <Q 𝑦𝑞 <Q 𝑦))
54anim1d 336 . . . . . 6 (𝑞 <Q 𝑟 → ((𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
65eximdv 1891 . . . . 5 (𝑞 <Q 𝑟 → (∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
7 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
87recexprlemell 7684 . . . . 5 (𝑟 ∈ (1st𝐵) ↔ ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
97recexprlemell 7684 . . . . 5 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
106, 8, 93imtr4g 205 . . . 4 (𝑞 <Q 𝑟 → (𝑟 ∈ (1st𝐵) → 𝑞 ∈ (1st𝐵)))
1110imp 124 . . 3 ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵))
1211rexlimivw 2607 . 2 (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵))
1312a1i 9 1 ((𝐴P𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wrex 2473  cop 3622   class class class wbr 4030  cfv 5255  1st c1st 6193  2nd c2nd 6194  Qcnq 7342  *Qcrq 7346   <Q cltq 7347  Pcnp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-mi 7368  df-lti 7369  df-enq 7409  df-nqqs 7410  df-ltnqqs 7415
This theorem is referenced by:  recexprlemrnd  7691
  Copyright terms: Public domain W3C validator