Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ico0 GIF version

Theorem ico0 10063
 Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ico0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))

Proof of Theorem ico0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icoval 9725 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)})
21eqeq1d 2148 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅))
3 xrlelttr 9612 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
433com23 1187 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
543expa 1181 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
65rexlimdva 2549 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
7 qbtwnxr 10059 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
8 qre 9439 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
98rexrd 7834 . . . . . . . . . . 11 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
109a1i 9 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*))
11 simpr1 987 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → 𝐴 ∈ ℝ*)
12 simpl 108 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → 𝑥 ∈ ℝ*)
13 xrltle 9607 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴 < 𝑥𝐴𝑥))
1411, 12, 13syl2anc 408 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝐴 < 𝑥𝐴𝑥))
1514anim1d 334 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝐴 < 𝑥𝑥 < 𝐵) → (𝐴𝑥𝑥 < 𝐵)))
1610, 15anim12d 333 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵))))
1716ex 114 . . . . . . . . . . 11 (𝑥 ∈ ℝ* → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵)))))
189, 17syl 14 . . . . . . . . . 10 (𝑥 ∈ ℚ → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵)))))
1918adantr 274 . . . . . . . . 9 ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵)))))
2019pm2.43b 52 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵))))
2120reximdv2 2531 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵)))
227, 21mpd 13 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵))
23223expia 1183 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵)))
246, 23impbid 128 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵) ↔ 𝐴 < 𝐵))
2524notbid 656 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵) ↔ ¬ 𝐴 < 𝐵))
26 rabeq0 3392 . . . . 5 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴𝑥𝑥 < 𝐵))
27 ralnex 2426 . . . . 5 (∀𝑥 ∈ ℝ* ¬ (𝐴𝑥𝑥 < 𝐵) ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵))
2826, 27bitri 183 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵))
2928a1i 9 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵)))
30 xrlenlt 7848 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
3130ancoms 266 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
3225, 29, 313bitr4d 219 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ 𝐵𝐴))
332, 32bitrd 187 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417  {crab 2420  ∅c0 3363   class class class wbr 3932  (class class class)co 5777  ℝ*cxr 7818   < clt 7819   ≤ cle 7820  ℚcq 9433  [,)cico 9696 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-mulrcl 7738  ax-addcom 7739  ax-mulcom 7740  ax-addass 7741  ax-mulass 7742  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-1rid 7746  ax-0id 7747  ax-rnegex 7748  ax-precex 7749  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755  ax-pre-mulgt0 7756  ax-pre-mulext 7757  ax-arch 7758 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-po 4221  df-iso 4222  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-1st 6041  df-2nd 6042  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-reap 8356  df-ap 8363  df-div 8452  df-inn 8740  df-2 8798  df-n0 8997  df-z 9074  df-uz 9346  df-q 9434  df-rp 9464  df-ico 9700 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator