| Step | Hyp | Ref
 | Expression | 
| 1 |   | icoval 9994 | 
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)}) | 
| 2 | 1 | eqeq1d 2205 | 
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)} = ∅)) | 
| 3 |   | xrlelttr 9881 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝑥 ∈
ℝ* ∧ 𝐵
∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) | 
| 4 | 3 | 3com23 1211 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) | 
| 5 | 4 | 3expa 1205 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) | 
| 6 | 5 | rexlimdva 2614 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) | 
| 7 |   | qbtwnxr 10347 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 8 |   | qre 9699 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ) | 
| 9 | 8 | rexrd 8076 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ*) | 
| 10 | 9 | a1i 9 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ*
∧ (𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵)) → (𝑥 ∈ ℚ → 𝑥 ∈
ℝ*)) | 
| 11 |   | simpr1 1005 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ*
∧ (𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵)) → 𝐴 ∈
ℝ*) | 
| 12 |   | simpl 109 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ*
∧ (𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵)) → 𝑥 ∈ ℝ*) | 
| 13 |   | xrltle 9873 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (𝐴 < 𝑥 → 𝐴 ≤ 𝑥)) | 
| 14 | 11, 12, 13 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ*
∧ (𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵)) → (𝐴 < 𝑥 → 𝐴 ≤ 𝑥)) | 
| 15 | 14 | anim1d 336 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ*
∧ (𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵)) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | 
| 16 | 10, 15 | anim12d 335 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ*
∧ (𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵)) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)))) | 
| 17 | 16 | ex 115 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ*
→ ((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))))) | 
| 18 | 9, 17 | syl 14 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ ℚ → ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))))) | 
| 19 | 18 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))))) | 
| 20 | 19 | pm2.43b 52 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)))) | 
| 21 | 20 | reximdv2 2596 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) →
(∃𝑥 ∈ ℚ
(𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | 
| 22 | 7, 21 | mpd 13 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ∃𝑥 ∈ ℝ*
(𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) | 
| 23 | 22 | 3expia 1207 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | 
| 24 | 6, 23 | impbid 129 | 
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵) ↔ 𝐴 < 𝐵)) | 
| 25 | 24 | notbid 668 | 
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (¬ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵) ↔ ¬ 𝐴 < 𝐵)) | 
| 26 |   | rabeq0 3480 | 
. . . . 5
⊢ ({𝑥 ∈ ℝ*
∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ ∀𝑥 ∈ ℝ*
¬ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) | 
| 27 |   | ralnex 2485 | 
. . . . 5
⊢
(∀𝑥 ∈
ℝ* ¬ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵) ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) | 
| 28 | 26, 27 | bitri 184 | 
. . . 4
⊢ ({𝑥 ∈ ℝ*
∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ*
(𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) | 
| 29 | 28 | a1i 9 | 
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ*
(𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | 
| 30 |   | xrlenlt 8091 | 
. . . 4
⊢ ((𝐵 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | 
| 31 | 30 | ancoms 268 | 
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | 
| 32 | 25, 29, 31 | 3bitr4d 220 | 
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ 𝐵 ≤ 𝐴)) | 
| 33 | 2, 32 | bitrd 188 | 
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |