Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ffzeq GIF version

Theorem 2ffzeq 9969
 Description: Two functions over 0 based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
2ffzeq ((𝑀 ∈ ℕ0𝐹:(0...𝑀)⟶𝑋𝑃:(0...𝑁)⟶𝑌) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖))))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑃,𝑖
Allowed substitution hints:   𝑁(𝑖)   𝑋(𝑖)   𝑌(𝑖)

Proof of Theorem 2ffzeq
StepHypRef Expression
1 ffn 5281 . . . . 5 (𝐹:(0...𝑀)⟶𝑋𝐹 Fn (0...𝑀))
2 ffn 5281 . . . . 5 (𝑃:(0...𝑁)⟶𝑌𝑃 Fn (0...𝑁))
31, 2anim12i 336 . . . 4 ((𝐹:(0...𝑀)⟶𝑋𝑃:(0...𝑁)⟶𝑌) → (𝐹 Fn (0...𝑀) ∧ 𝑃 Fn (0...𝑁)))
433adant1 1000 . . 3 ((𝑀 ∈ ℕ0𝐹:(0...𝑀)⟶𝑋𝑃:(0...𝑁)⟶𝑌) → (𝐹 Fn (0...𝑀) ∧ 𝑃 Fn (0...𝑁)))
5 eqfnfv2 5528 . . 3 ((𝐹 Fn (0...𝑀) ∧ 𝑃 Fn (0...𝑁)) → (𝐹 = 𝑃 ↔ ((0...𝑀) = (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖))))
64, 5syl 14 . 2 ((𝑀 ∈ ℕ0𝐹:(0...𝑀)⟶𝑋𝑃:(0...𝑁)⟶𝑌) → (𝐹 = 𝑃 ↔ ((0...𝑀) = (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖))))
7 elnn0uz 9407 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
8 fzopth 9892 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → ((0...𝑀) = (0...𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
97, 8sylbi 120 . . . . . 6 (𝑀 ∈ ℕ0 → ((0...𝑀) = (0...𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
10 simpr 109 . . . . . 6 ((0 = 0 ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
119, 10syl6bi 162 . . . . 5 (𝑀 ∈ ℕ0 → ((0...𝑀) = (0...𝑁) → 𝑀 = 𝑁))
1211anim1d 334 . . . 4 (𝑀 ∈ ℕ0 → (((0...𝑀) = (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖)) → (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖))))
13 oveq2 5791 . . . . 5 (𝑀 = 𝑁 → (0...𝑀) = (0...𝑁))
1413anim1i 338 . . . 4 ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖)) → ((0...𝑀) = (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖)))
1512, 14impbid1 141 . . 3 (𝑀 ∈ ℕ0 → (((0...𝑀) = (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖))))
16153ad2ant1 1003 . 2 ((𝑀 ∈ ℕ0𝐹:(0...𝑀)⟶𝑋𝑃:(0...𝑁)⟶𝑌) → (((0...𝑀) = (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖))))
176, 16bitrd 187 1 ((𝑀 ∈ ℕ0𝐹:(0...𝑀)⟶𝑋𝑃:(0...𝑁)⟶𝑌) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  ∀wral 2417   Fn wfn 5127  ⟶wf 5128  ‘cfv 5132  (class class class)co 5783  0cc0 7664  ℕ0cn0 9021  ℤ≥cuz 9370  ...cfz 9841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-addcom 7764  ax-addass 7766  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-0id 7772  ax-rnegex 7773  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4224  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-inn 8765  df-n0 9022  df-z 9099  df-uz 9371  df-fz 9842 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator