Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recexprlemupu | GIF version |
Description: The upper cut of 𝐵 is upper. Lemma for recexpr 7579. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
recexpr.1 | ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
Ref | Expression |
---|---|
recexprlemupu | ⊢ ((𝐴 ∈ P ∧ 𝑟 ∈ Q) → (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsonq 7339 | . . . . . . . . 9 ⊢ <Q Or Q | |
2 | ltrelnq 7306 | . . . . . . . . 9 ⊢ <Q ⊆ (Q × Q) | |
3 | 1, 2 | sotri 4999 | . . . . . . . 8 ⊢ ((𝑦 <Q 𝑞 ∧ 𝑞 <Q 𝑟) → 𝑦 <Q 𝑟) |
4 | 3 | expcom 115 | . . . . . . 7 ⊢ (𝑞 <Q 𝑟 → (𝑦 <Q 𝑞 → 𝑦 <Q 𝑟)) |
5 | 4 | anim1d 334 | . . . . . 6 ⊢ (𝑞 <Q 𝑟 → ((𝑦 <Q 𝑞 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴)) → (𝑦 <Q 𝑟 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴)))) |
6 | 5 | eximdv 1868 | . . . . 5 ⊢ (𝑞 <Q 𝑟 → (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴)))) |
7 | recexpr.1 | . . . . . 6 ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | |
8 | 7 | recexprlemelu 7564 | . . . . 5 ⊢ (𝑞 ∈ (2nd ‘𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))) |
9 | 7 | recexprlemelu 7564 | . . . . 5 ⊢ (𝑟 ∈ (2nd ‘𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))) |
10 | 6, 8, 9 | 3imtr4g 204 | . . . 4 ⊢ (𝑞 <Q 𝑟 → (𝑞 ∈ (2nd ‘𝐵) → 𝑟 ∈ (2nd ‘𝐵))) |
11 | 10 | imp 123 | . . 3 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵)) |
12 | 11 | rexlimivw 2579 | . 2 ⊢ (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵)) |
13 | 12 | a1i 9 | 1 ⊢ ((𝐴 ∈ P ∧ 𝑟 ∈ Q) → (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 ∃wrex 2445 〈cop 3579 class class class wbr 3982 ‘cfv 5188 1st c1st 6106 2nd c2nd 6107 Qcnq 7221 *Qcrq 7225 <Q cltq 7226 Pcnp 7232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-mi 7247 df-lti 7248 df-enq 7288 df-nqqs 7289 df-ltnqqs 7294 |
This theorem is referenced by: recexprlemrnd 7570 |
Copyright terms: Public domain | W3C validator |