ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemupu GIF version

Theorem recexprlemupu 7641
Description: The upper cut of 𝐵 is upper. Lemma for recexpr 7651. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemupu ((𝐴P𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemupu
StepHypRef Expression
1 ltsonq 7411 . . . . . . . . 9 <Q Or Q
2 ltrelnq 7378 . . . . . . . . 9 <Q ⊆ (Q × Q)
31, 2sotri 5036 . . . . . . . 8 ((𝑦 <Q 𝑞𝑞 <Q 𝑟) → 𝑦 <Q 𝑟)
43expcom 116 . . . . . . 7 (𝑞 <Q 𝑟 → (𝑦 <Q 𝑞𝑦 <Q 𝑟))
54anim1d 336 . . . . . 6 (𝑞 <Q 𝑟 → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → (𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
65eximdv 1890 . . . . 5 (𝑞 <Q 𝑟 → (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
7 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
87recexprlemelu 7636 . . . . 5 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
97recexprlemelu 7636 . . . . 5 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
106, 8, 93imtr4g 205 . . . 4 (𝑞 <Q 𝑟 → (𝑞 ∈ (2nd𝐵) → 𝑟 ∈ (2nd𝐵)))
1110imp 124 . . 3 ((𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵))
1211rexlimivw 2600 . 2 (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵))
1312a1i 9 1 ((𝐴P𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wex 1502  wcel 2158  {cab 2173  wrex 2466  cop 3607   class class class wbr 4015  cfv 5228  1st c1st 6153  2nd c2nd 6154  Qcnq 7293  *Qcrq 7297   <Q cltq 7298  Pcnp 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-oadd 6435  df-omul 6436  df-er 6549  df-ec 6551  df-qs 6555  df-ni 7317  df-mi 7319  df-lti 7320  df-enq 7360  df-nqqs 7361  df-ltnqqs 7366
This theorem is referenced by:  recexprlemrnd  7642
  Copyright terms: Public domain W3C validator