![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recexprlemupu | GIF version |
Description: The upper cut of 𝐵 is upper. Lemma for recexpr 7651. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
recexpr.1 | ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
Ref | Expression |
---|---|
recexprlemupu | ⊢ ((𝐴 ∈ P ∧ 𝑟 ∈ Q) → (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsonq 7411 | . . . . . . . . 9 ⊢ <Q Or Q | |
2 | ltrelnq 7378 | . . . . . . . . 9 ⊢ <Q ⊆ (Q × Q) | |
3 | 1, 2 | sotri 5036 | . . . . . . . 8 ⊢ ((𝑦 <Q 𝑞 ∧ 𝑞 <Q 𝑟) → 𝑦 <Q 𝑟) |
4 | 3 | expcom 116 | . . . . . . 7 ⊢ (𝑞 <Q 𝑟 → (𝑦 <Q 𝑞 → 𝑦 <Q 𝑟)) |
5 | 4 | anim1d 336 | . . . . . 6 ⊢ (𝑞 <Q 𝑟 → ((𝑦 <Q 𝑞 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴)) → (𝑦 <Q 𝑟 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴)))) |
6 | 5 | eximdv 1890 | . . . . 5 ⊢ (𝑞 <Q 𝑟 → (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴)))) |
7 | recexpr.1 | . . . . . 6 ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | |
8 | 7 | recexprlemelu 7636 | . . . . 5 ⊢ (𝑞 ∈ (2nd ‘𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))) |
9 | 7 | recexprlemelu 7636 | . . . . 5 ⊢ (𝑟 ∈ (2nd ‘𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))) |
10 | 6, 8, 9 | 3imtr4g 205 | . . . 4 ⊢ (𝑞 <Q 𝑟 → (𝑞 ∈ (2nd ‘𝐵) → 𝑟 ∈ (2nd ‘𝐵))) |
11 | 10 | imp 124 | . . 3 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵)) |
12 | 11 | rexlimivw 2600 | . 2 ⊢ (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵)) |
13 | 12 | a1i 9 | 1 ⊢ ((𝐴 ∈ P ∧ 𝑟 ∈ Q) → (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∃wex 1502 ∈ wcel 2158 {cab 2173 ∃wrex 2466 〈cop 3607 class class class wbr 4015 ‘cfv 5228 1st c1st 6153 2nd c2nd 6154 Qcnq 7293 *Qcrq 7297 <Q cltq 7298 Pcnp 7304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-eprel 4301 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-oadd 6435 df-omul 6436 df-er 6549 df-ec 6551 df-qs 6555 df-ni 7317 df-mi 7319 df-lti 7320 df-enq 7360 df-nqqs 7361 df-ltnqqs 7366 |
This theorem is referenced by: recexprlemrnd 7642 |
Copyright terms: Public domain | W3C validator |