ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemupu GIF version

Theorem recexprlemupu 7590
Description: The upper cut of 𝐵 is upper. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemupu ((𝐴P𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemupu
StepHypRef Expression
1 ltsonq 7360 . . . . . . . . 9 <Q Or Q
2 ltrelnq 7327 . . . . . . . . 9 <Q ⊆ (Q × Q)
31, 2sotri 5006 . . . . . . . 8 ((𝑦 <Q 𝑞𝑞 <Q 𝑟) → 𝑦 <Q 𝑟)
43expcom 115 . . . . . . 7 (𝑞 <Q 𝑟 → (𝑦 <Q 𝑞𝑦 <Q 𝑟))
54anim1d 334 . . . . . 6 (𝑞 <Q 𝑟 → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → (𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
65eximdv 1873 . . . . 5 (𝑞 <Q 𝑟 → (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
7 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
87recexprlemelu 7585 . . . . 5 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
97recexprlemelu 7585 . . . . 5 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
106, 8, 93imtr4g 204 . . . 4 (𝑞 <Q 𝑟 → (𝑞 ∈ (2nd𝐵) → 𝑟 ∈ (2nd𝐵)))
1110imp 123 . . 3 ((𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵))
1211rexlimivw 2583 . 2 (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵))
1312a1i 9 1 ((𝐴P𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  {cab 2156  wrex 2449  cop 3586   class class class wbr 3989  cfv 5198  1st c1st 6117  2nd c2nd 6118  Qcnq 7242  *Qcrq 7246   <Q cltq 7247  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-lti 7269  df-enq 7309  df-nqqs 7310  df-ltnqqs 7315
This theorem is referenced by:  recexprlemrnd  7591
  Copyright terms: Public domain W3C validator