Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neiss | GIF version |
Description: Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅 ⊆ 𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.) |
Ref | Expression |
---|---|
neiss | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | neii1 12589 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ ∪ 𝐽) |
3 | 2 | 3adant3 1002 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ⊆ ∪ 𝐽) |
4 | neii2 12591 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) | |
5 | 4 | 3adant3 1002 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
6 | sstr2 3135 | . . . . . 6 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 ⊆ 𝑔 → 𝑅 ⊆ 𝑔)) | |
7 | 6 | anim1d 334 | . . . . 5 ⊢ (𝑅 ⊆ 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
8 | 7 | reximdv 2558 | . . . 4 ⊢ (𝑅 ⊆ 𝑆 → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
9 | 8 | 3ad2ant3 1005 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
10 | 5, 9 | mpd 13 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
11 | simp1 982 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝐽 ∈ Top) | |
12 | simp3 984 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑅 ⊆ 𝑆) | |
13 | 1 | neiss2 12584 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∪ 𝐽) |
14 | 13 | 3adant3 1002 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑆 ⊆ ∪ 𝐽) |
15 | 12, 14 | sstrd 3138 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑅 ⊆ ∪ 𝐽) |
16 | 1 | isnei 12586 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑅 ⊆ ∪ 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
17 | 11, 15, 16 | syl2anc 409 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
18 | 3, 10, 17 | mpbir2and 929 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 963 ∈ wcel 2128 ∃wrex 2436 ⊆ wss 3102 ∪ cuni 3773 ‘cfv 5171 Topctop 12437 neicnei 12580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-pow 4136 ax-pr 4170 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-id 4254 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-top 12438 df-nei 12581 |
This theorem is referenced by: neipsm 12596 neissex 12607 |
Copyright terms: Public domain | W3C validator |