ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiss GIF version

Theorem neiss 12790
Description: Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
Assertion
Ref Expression
neiss ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅))

Proof of Theorem neiss
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . 4 𝐽 = 𝐽
21neii1 12787 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 𝐽)
323adant3 1007 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑁 𝐽)
4 neii2 12789 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
543adant3 1007 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
6 sstr2 3149 . . . . . 6 (𝑅𝑆 → (𝑆𝑔𝑅𝑔))
76anim1d 334 . . . . 5 (𝑅𝑆 → ((𝑆𝑔𝑔𝑁) → (𝑅𝑔𝑔𝑁)))
87reximdv 2567 . . . 4 (𝑅𝑆 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → ∃𝑔𝐽 (𝑅𝑔𝑔𝑁)))
983ad2ant3 1010 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → ∃𝑔𝐽 (𝑅𝑔𝑔𝑁)))
105, 9mpd 13 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → ∃𝑔𝐽 (𝑅𝑔𝑔𝑁))
11 simp1 987 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝐽 ∈ Top)
12 simp3 989 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑅𝑆)
131neiss2 12782 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 𝐽)
14133adant3 1007 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑆 𝐽)
1512, 14sstrd 3152 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑅 𝐽)
161isnei 12784 . . 3 ((𝐽 ∈ Top ∧ 𝑅 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑅𝑔𝑔𝑁))))
1711, 15, 16syl2anc 409 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑅𝑔𝑔𝑁))))
183, 10, 17mpbir2and 934 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wcel 2136  wrex 2445  wss 3116   cuni 3789  cfv 5188  Topctop 12635  neicnei 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12636  df-nei 12779
This theorem is referenced by:  neipsm  12794  neissex  12805
  Copyright terms: Public domain W3C validator