ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icoshft GIF version

Theorem icoshft 9926
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
Assertion
Ref Expression
icoshft ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))

Proof of Theorem icoshft
StepHypRef Expression
1 rexr 7944 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 9873 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
31, 2sylan2 284 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
43biimpd 143 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
543adant3 1007 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
6 3anass 972 . . 3 ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵) ↔ (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)))
75, 6syl6ib 160 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵))))
8 leadd1 8328 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
983com12 1197 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
1093expib 1196 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1110com12 30 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
12113adant2 1006 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1312imp 123 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
14 ltadd1 8327 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
15143expib 1196 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1615com12 30 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
17163adant1 1005 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1817imp 123 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
1913, 18anbi12d 465 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → ((𝐴𝑋𝑋 < 𝐵) ↔ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2019pm5.32da 448 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) ↔ (𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
21 readdcl 7879 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 + 𝐶) ∈ ℝ)
2221expcom 115 . . . . . . 7 (𝐶 ∈ ℝ → (𝑋 ∈ ℝ → (𝑋 + 𝐶) ∈ ℝ))
2322anim1d 334 . . . . . 6 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
24 3anass 972 . . . . . 6 (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2523, 24syl6ibr 161 . . . . 5 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
26253ad2ant3 1010 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
27 readdcl 7879 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
28273adant2 1006 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
29 readdcl 7879 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
30293adant1 1005 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
31 rexr 7944 . . . . . . 7 ((𝐵 + 𝐶) ∈ ℝ → (𝐵 + 𝐶) ∈ ℝ*)
32 elico2 9873 . . . . . . 7 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3331, 32sylan2 284 . . . . . 6 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3433biimprd 157 . . . . 5 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3528, 30, 34syl2anc 409 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3626, 35syld 45 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3720, 36sylbid 149 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
387, 37syld 45 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752   + caddc 7756  *cxr 7932   < clt 7933  cle 7934  [,)cico 9826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-ico 9830
This theorem is referenced by:  icoshftf1o  9927
  Copyright terms: Public domain W3C validator