ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemzz GIF version

Theorem bezoutlemzz 11920
Description: Lemma for Bézout's identity. Like bezoutlemex 11919 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemzz ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlemzz
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemex 11919 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2 nfv 1515 . . . . . . 7 𝑧((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
3 nfra1 2495 . . . . . . 7 𝑧𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))
42, 3nfan 1552 . . . . . 6 𝑧(((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
5 simpr 109 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ0)
6 rsp 2511 . . . . . . . . . . 11 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧 ∈ ℕ0 → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
76ad2antrr 480 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧 ∈ ℕ0 → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
85, 7mpd 13 . . . . . . . . 9 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
98adantlll 472 . . . . . . . 8 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
10 breq1 3979 . . . . . . . . . . . 12 (𝑤 = -𝑧 → (𝑤𝑑 ↔ -𝑧𝑑))
11 breq1 3979 . . . . . . . . . . . . 13 (𝑤 = -𝑧 → (𝑤𝐴 ↔ -𝑧𝐴))
12 breq1 3979 . . . . . . . . . . . . 13 (𝑤 = -𝑧 → (𝑤𝐵 ↔ -𝑧𝐵))
1311, 12anbi12d 465 . . . . . . . . . . . 12 (𝑤 = -𝑧 → ((𝑤𝐴𝑤𝐵) ↔ (-𝑧𝐴 ∧ -𝑧𝐵)))
1410, 13imbi12d 233 . . . . . . . . . . 11 (𝑤 = -𝑧 → ((𝑤𝑑 → (𝑤𝐴𝑤𝐵)) ↔ (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵))))
15 breq1 3979 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝑑𝑤𝑑))
16 breq1 3979 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
17 breq1 3979 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
1816, 17anbi12d 465 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
1915, 18imbi12d 233 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝑑 → (𝑤𝐴𝑤𝐵))))
2019cbvralv 2689 . . . . . . . . . . . . 13 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
2120biimpi 119 . . . . . . . . . . . 12 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
2221ad2antrr 480 . . . . . . . . . . 11 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
23 simpr 109 . . . . . . . . . . 11 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → -𝑧 ∈ ℕ0)
2414, 22, 23rspcdva 2830 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵)))
2524adantlll 472 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵)))
26 simplr 520 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℤ)
27 simpllr 524 . . . . . . . . . . . 12 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → 𝑑 ∈ ℕ0)
2827adantr 274 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑑 ∈ ℕ0)
2928nn0zd 9302 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑑 ∈ ℤ)
30 negdvdsb 11733 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑧𝑑 ↔ -𝑧𝑑))
3126, 29, 30syl2anc 409 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝑑 ↔ -𝑧𝑑))
32 simplll 523 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → 𝐴 ∈ ℕ0)
3332ad2antrr 480 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐴 ∈ ℕ0)
3433nn0zd 9302 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐴 ∈ ℤ)
35 negdvdsb 11733 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑧𝐴 ↔ -𝑧𝐴))
3626, 34, 35syl2anc 409 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝐴 ↔ -𝑧𝐴))
37 simpllr 524 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → 𝐵 ∈ ℕ0)
3837ad2antrr 480 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐵 ∈ ℕ0)
3938nn0zd 9302 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐵 ∈ ℤ)
40 negdvdsb 11733 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑧𝐵 ↔ -𝑧𝐵))
4126, 39, 40syl2anc 409 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝐵 ↔ -𝑧𝐵))
4236, 41anbi12d 465 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → ((𝑧𝐴𝑧𝐵) ↔ (-𝑧𝐴 ∧ -𝑧𝐵)))
4325, 31, 423imtr4d 202 . . . . . . . 8 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
44 elznn0 9197 . . . . . . . . . 10 (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0)))
4544simprbi 273 . . . . . . . . 9 (𝑧 ∈ ℤ → (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0))
4645adantl 275 . . . . . . . 8 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0))
479, 43, 46mpjaodan 788 . . . . . . 7 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
4847ex 114 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (𝑧 ∈ ℤ → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
494, 48ralrimi 2535 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
5049ex 114 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
5150anim1d 334 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
5251reximdva 2566 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
531, 52mpd 13 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1342  wcel 2135  wral 2442  wrex 2443   class class class wbr 3976  (class class class)co 5836  cr 7743   + caddc 7747   · cmul 7749  -cneg 8061  0cn0 9105  cz 9182  cdvds 11713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714
This theorem is referenced by:  bezoutlemaz  11921
  Copyright terms: Public domain W3C validator