ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemzz GIF version

Theorem bezoutlemzz 11690
Description: Lemma for Bézout's identity. Like bezoutlemex 11689 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemzz ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlemzz
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemex 11689 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2 nfv 1508 . . . . . . 7 𝑧((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
3 nfra1 2466 . . . . . . 7 𝑧𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))
42, 3nfan 1544 . . . . . 6 𝑧(((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
5 simpr 109 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ0)
6 rsp 2480 . . . . . . . . . . 11 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧 ∈ ℕ0 → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
76ad2antrr 479 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧 ∈ ℕ0 → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
85, 7mpd 13 . . . . . . . . 9 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
98adantlll 471 . . . . . . . 8 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
10 breq1 3932 . . . . . . . . . . . 12 (𝑤 = -𝑧 → (𝑤𝑑 ↔ -𝑧𝑑))
11 breq1 3932 . . . . . . . . . . . . 13 (𝑤 = -𝑧 → (𝑤𝐴 ↔ -𝑧𝐴))
12 breq1 3932 . . . . . . . . . . . . 13 (𝑤 = -𝑧 → (𝑤𝐵 ↔ -𝑧𝐵))
1311, 12anbi12d 464 . . . . . . . . . . . 12 (𝑤 = -𝑧 → ((𝑤𝐴𝑤𝐵) ↔ (-𝑧𝐴 ∧ -𝑧𝐵)))
1410, 13imbi12d 233 . . . . . . . . . . 11 (𝑤 = -𝑧 → ((𝑤𝑑 → (𝑤𝐴𝑤𝐵)) ↔ (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵))))
15 breq1 3932 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝑑𝑤𝑑))
16 breq1 3932 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
17 breq1 3932 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
1816, 17anbi12d 464 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
1915, 18imbi12d 233 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝑑 → (𝑤𝐴𝑤𝐵))))
2019cbvralv 2654 . . . . . . . . . . . . 13 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
2120biimpi 119 . . . . . . . . . . . 12 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
2221ad2antrr 479 . . . . . . . . . . 11 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
23 simpr 109 . . . . . . . . . . 11 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → -𝑧 ∈ ℕ0)
2414, 22, 23rspcdva 2794 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵)))
2524adantlll 471 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵)))
26 simplr 519 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℤ)
27 simpllr 523 . . . . . . . . . . . 12 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → 𝑑 ∈ ℕ0)
2827adantr 274 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑑 ∈ ℕ0)
2928nn0zd 9171 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑑 ∈ ℤ)
30 negdvdsb 11509 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑧𝑑 ↔ -𝑧𝑑))
3126, 29, 30syl2anc 408 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝑑 ↔ -𝑧𝑑))
32 simplll 522 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → 𝐴 ∈ ℕ0)
3332ad2antrr 479 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐴 ∈ ℕ0)
3433nn0zd 9171 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐴 ∈ ℤ)
35 negdvdsb 11509 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑧𝐴 ↔ -𝑧𝐴))
3626, 34, 35syl2anc 408 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝐴 ↔ -𝑧𝐴))
37 simpllr 523 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → 𝐵 ∈ ℕ0)
3837ad2antrr 479 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐵 ∈ ℕ0)
3938nn0zd 9171 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐵 ∈ ℤ)
40 negdvdsb 11509 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑧𝐵 ↔ -𝑧𝐵))
4126, 39, 40syl2anc 408 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝐵 ↔ -𝑧𝐵))
4236, 41anbi12d 464 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → ((𝑧𝐴𝑧𝐵) ↔ (-𝑧𝐴 ∧ -𝑧𝐵)))
4325, 31, 423imtr4d 202 . . . . . . . 8 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
44 elznn0 9069 . . . . . . . . . 10 (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0)))
4544simprbi 273 . . . . . . . . 9 (𝑧 ∈ ℤ → (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0))
4645adantl 275 . . . . . . . 8 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0))
479, 43, 46mpjaodan 787 . . . . . . 7 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
4847ex 114 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (𝑧 ∈ ℤ → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
494, 48ralrimi 2503 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
5049ex 114 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
5150anim1d 334 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
5251reximdva 2534 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
531, 52mpd 13 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  wral 2416  wrex 2417   class class class wbr 3929  (class class class)co 5774  cr 7619   + caddc 7623   · cmul 7625  -cneg 7934  0cn0 8977  cz 9054  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494
This theorem is referenced by:  bezoutlemaz  11691
  Copyright terms: Public domain W3C validator