ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemzz GIF version

Theorem bezoutlemzz 12035
Description: Lemma for Bézout's identity. Like bezoutlemex 12034 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemzz ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlemzz
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemex 12034 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2 nfv 1539 . . . . . . 7 𝑧((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0)
3 nfra1 2521 . . . . . . 7 𝑧𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))
42, 3nfan 1576 . . . . . 6 𝑧(((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
5 simpr 110 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ0)
6 rsp 2537 . . . . . . . . . . 11 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧 ∈ ℕ0 → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
76ad2antrr 488 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧 ∈ ℕ0 → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
85, 7mpd 13 . . . . . . . . 9 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
98adantlll 480 . . . . . . . 8 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
10 breq1 4021 . . . . . . . . . . . 12 (𝑤 = -𝑧 → (𝑤𝑑 ↔ -𝑧𝑑))
11 breq1 4021 . . . . . . . . . . . . 13 (𝑤 = -𝑧 → (𝑤𝐴 ↔ -𝑧𝐴))
12 breq1 4021 . . . . . . . . . . . . 13 (𝑤 = -𝑧 → (𝑤𝐵 ↔ -𝑧𝐵))
1311, 12anbi12d 473 . . . . . . . . . . . 12 (𝑤 = -𝑧 → ((𝑤𝐴𝑤𝐵) ↔ (-𝑧𝐴 ∧ -𝑧𝐵)))
1410, 13imbi12d 234 . . . . . . . . . . 11 (𝑤 = -𝑧 → ((𝑤𝑑 → (𝑤𝐴𝑤𝐵)) ↔ (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵))))
15 breq1 4021 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝑑𝑤𝑑))
16 breq1 4021 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
17 breq1 4021 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
1816, 17anbi12d 473 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
1915, 18imbi12d 234 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝑑 → (𝑤𝐴𝑤𝐵))))
2019cbvralv 2718 . . . . . . . . . . . . 13 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
2120biimpi 120 . . . . . . . . . . . 12 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
2221ad2antrr 488 . . . . . . . . . . 11 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝐴𝑤𝐵)))
23 simpr 110 . . . . . . . . . . 11 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → -𝑧 ∈ ℕ0)
2414, 22, 23rspcdva 2861 . . . . . . . . . 10 (((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵)))
2524adantlll 480 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (-𝑧𝑑 → (-𝑧𝐴 ∧ -𝑧𝐵)))
26 simplr 528 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℤ)
27 simpllr 534 . . . . . . . . . . . 12 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → 𝑑 ∈ ℕ0)
2827adantr 276 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑑 ∈ ℕ0)
2928nn0zd 9403 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝑑 ∈ ℤ)
30 negdvdsb 11846 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑧𝑑 ↔ -𝑧𝑑))
3126, 29, 30syl2anc 411 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝑑 ↔ -𝑧𝑑))
32 simplll 533 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → 𝐴 ∈ ℕ0)
3332ad2antrr 488 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐴 ∈ ℕ0)
3433nn0zd 9403 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐴 ∈ ℤ)
35 negdvdsb 11846 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑧𝐴 ↔ -𝑧𝐴))
3626, 34, 35syl2anc 411 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝐴 ↔ -𝑧𝐴))
37 simpllr 534 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → 𝐵 ∈ ℕ0)
3837ad2antrr 488 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐵 ∈ ℕ0)
3938nn0zd 9403 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → 𝐵 ∈ ℤ)
40 negdvdsb 11846 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑧𝐵 ↔ -𝑧𝐵))
4126, 39, 40syl2anc 411 . . . . . . . . . 10 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝐵 ↔ -𝑧𝐵))
4236, 41anbi12d 473 . . . . . . . . 9 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → ((𝑧𝐴𝑧𝐵) ↔ (-𝑧𝐴 ∧ -𝑧𝐵)))
4325, 31, 423imtr4d 203 . . . . . . . 8 ((((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) ∧ -𝑧 ∈ ℕ0) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
44 elznn0 9298 . . . . . . . . . 10 (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0)))
4544simprbi 275 . . . . . . . . 9 (𝑧 ∈ ℤ → (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0))
4645adantl 277 . . . . . . . 8 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → (𝑧 ∈ ℕ0 ∨ -𝑧 ∈ ℕ0))
479, 43, 46mpjaodan 799 . . . . . . 7 (((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
4847ex 115 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (𝑧 ∈ ℤ → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
494, 48ralrimi 2561 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)))
5049ex 115 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
5150anim1d 336 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
5251reximdva 2592 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
531, 52mpd 13 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2160  wral 2468  wrex 2469   class class class wbr 4018  (class class class)co 5896  cr 7840   + caddc 7844   · cmul 7846  -cneg 8159  0cn0 9206  cz 9283  cdvds 11826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-dvds 11827
This theorem is referenced by:  bezoutlemaz  12036
  Copyright terms: Public domain W3C validator