Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnlimcim | GIF version |
Description: If 𝐹 is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.) |
Ref | Expression |
---|---|
cnlimcim | ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3167 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
2 | eqid 2170 | . . . . . 6 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
3 | eqid 2170 | . . . . . 6 ⊢ ((MetOpen‘(abs ∘ − )) ↾t 𝐴) = ((MetOpen‘(abs ∘ − )) ↾t 𝐴) | |
4 | 2 | cntoptopon 13326 | . . . . . . 7 ⊢ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) |
5 | 4 | toponrestid 12813 | . . . . . 6 ⊢ (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ) |
6 | 2, 3, 5 | cncfcncntop 13374 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴–cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
7 | 1, 6 | mpan2 423 | . . . 4 ⊢ (𝐴 ⊆ ℂ → (𝐴–cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
8 | 7 | eleq2d 2240 | . . 3 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ 𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))))) |
9 | resttopon 12965 | . . . . 5 ⊢ (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
10 | 4, 9 | mpan 422 | . . . 4 ⊢ (𝐴 ⊆ ℂ → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴)) |
11 | cncnp 13024 | . . . 4 ⊢ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) | |
12 | 10, 4, 11 | sylancl 411 | . . 3 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) |
13 | 8, 12 | bitrd 187 | . 2 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) |
14 | 2, 3 | cnplimcim 13430 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) → (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
15 | simpr 109 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) → (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) | |
16 | 14, 15 | syl6 33 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) → (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥))) |
17 | 16 | ralimdva 2537 | . . 3 ⊢ (𝐴 ⊆ ℂ → (∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥))) |
18 | 17 | anim2d 335 | . 2 ⊢ (𝐴 ⊆ ℂ → ((𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
19 | 13, 18 | sylbid 149 | 1 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 ∘ ccom 4615 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 − cmin 8090 abscabs 10961 ↾t crest 12579 MetOpencmopn 12779 TopOnctopon 12802 Cn ccn 12979 CnP ccnp 12980 –cn→ccncf 13351 limℂ climc 13417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-map 6628 df-pm 6629 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-cn 12982 df-cnp 12983 df-cncf 13352 df-limced 13419 |
This theorem is referenced by: cnlimci 13436 |
Copyright terms: Public domain | W3C validator |