| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnlimcim | GIF version | ||
| Description: If 𝐹 is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.) |
| Ref | Expression |
|---|---|
| cnlimcim | ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3221 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 2 | eqid 2207 | . . . . . 6 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
| 3 | eqid 2207 | . . . . . 6 ⊢ ((MetOpen‘(abs ∘ − )) ↾t 𝐴) = ((MetOpen‘(abs ∘ − )) ↾t 𝐴) | |
| 4 | 2 | cntoptopon 15119 | . . . . . . 7 ⊢ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) |
| 5 | 4 | toponrestid 14608 | . . . . . 6 ⊢ (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ) |
| 6 | 2, 3, 5 | cncfcncntop 15180 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴–cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
| 7 | 1, 6 | mpan2 425 | . . . 4 ⊢ (𝐴 ⊆ ℂ → (𝐴–cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
| 8 | 7 | eleq2d 2277 | . . 3 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ 𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))))) |
| 9 | resttopon 14758 | . . . . 5 ⊢ (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
| 10 | 4, 9 | mpan 424 | . . . 4 ⊢ (𝐴 ⊆ ℂ → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 11 | cncnp 14817 | . . . 4 ⊢ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) | |
| 12 | 10, 4, 11 | sylancl 413 | . . 3 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) |
| 13 | 8, 12 | bitrd 188 | . 2 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) |
| 14 | 2, 3 | cnplimcim 15254 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) → (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
| 15 | simpr 110 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) → (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) | |
| 16 | 14, 15 | syl6 33 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) → (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥))) |
| 17 | 16 | ralimdva 2575 | . . 3 ⊢ (𝐴 ⊆ ℂ → (∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥))) |
| 18 | 17 | anim2d 337 | . 2 ⊢ (𝐴 ⊆ ℂ → ((𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
| 19 | 13, 18 | sylbid 150 | 1 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ⊆ wss 3174 ∘ ccom 4697 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 − cmin 8278 abscabs 11423 ↾t crest 13186 MetOpencmopn 14418 TopOnctopon 14597 Cn ccn 14772 CnP ccnp 14773 –cn→ccncf 15157 limℂ climc 15241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-pm 6761 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-cn 14775 df-cnp 14776 df-cncf 15158 df-limced 15243 |
| This theorem is referenced by: cnlimci 15260 |
| Copyright terms: Public domain | W3C validator |