ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnei2 GIF version

Theorem ssnei2 12504
Description: Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
ssnei2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem ssnei2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simprr 522 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀𝑋)
2 neii2 12496 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
3 sstr2 3131 . . . . . . 7 (𝑔𝑁 → (𝑁𝑀𝑔𝑀))
43com12 30 . . . . . 6 (𝑁𝑀 → (𝑔𝑁𝑔𝑀))
54anim2d 335 . . . . 5 (𝑁𝑀 → ((𝑆𝑔𝑔𝑁) → (𝑆𝑔𝑔𝑀)))
65reximdv 2555 . . . 4 (𝑁𝑀 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀)))
72, 6mpan9 279 . . 3 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑁𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))
87adantrr 471 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))
9 neips.1 . . . . 5 𝑋 = 𝐽
109neiss2 12489 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
119isnei 12491 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
1210, 11syldan 280 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
1312adantr 274 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
141, 8, 13mpbir2and 929 1 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 2125  wrex 2433  wss 3098   cuni 3768  cfv 5163  Topctop 12342  neicnei 12485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-top 12343  df-nei 12486
This theorem is referenced by:  topssnei  12509
  Copyright terms: Public domain W3C validator