ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnei2 GIF version

Theorem ssnei2 14673
Description: Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
ssnei2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem ssnei2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simprr 531 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀𝑋)
2 neii2 14665 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
3 sstr2 3201 . . . . . . 7 (𝑔𝑁 → (𝑁𝑀𝑔𝑀))
43com12 30 . . . . . 6 (𝑁𝑀 → (𝑔𝑁𝑔𝑀))
54anim2d 337 . . . . 5 (𝑁𝑀 → ((𝑆𝑔𝑔𝑁) → (𝑆𝑔𝑔𝑀)))
65reximdv 2608 . . . 4 (𝑁𝑀 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀)))
72, 6mpan9 281 . . 3 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑁𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))
87adantrr 479 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))
9 neips.1 . . . . 5 𝑋 = 𝐽
109neiss2 14658 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
119isnei 14660 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
1210, 11syldan 282 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
1312adantr 276 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
141, 8, 13mpbir2and 947 1 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486  wss 3167   cuni 3852  cfv 5276  Topctop 14513  neicnei 14654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-top 14514  df-nei 14655
This theorem is referenced by:  topssnei  14678
  Copyright terms: Public domain W3C validator