Step | Hyp | Ref
| Expression |
1 | | simprr 531 |
. 2
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β π) |
2 | | neii2 13652 |
. . . 4
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β βπ β π½ (π β π β§ π β π)) |
3 | | sstr2 3163 |
. . . . . . 7
β’ (π β π β (π β π β π β π)) |
4 | 3 | com12 30 |
. . . . . 6
β’ (π β π β (π β π β π β π)) |
5 | 4 | anim2d 337 |
. . . . 5
β’ (π β π β ((π β π β§ π β π) β (π β π β§ π β π))) |
6 | 5 | reximdv 2578 |
. . . 4
β’ (π β π β (βπ β π½ (π β π β§ π β π) β βπ β π½ (π β π β§ π β π))) |
7 | 2, 6 | mpan9 281 |
. . 3
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ π β π) β βπ β π½ (π β π β§ π β π)) |
8 | 7 | adantrr 479 |
. 2
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β βπ β π½ (π β π β§ π β π)) |
9 | | neips.1 |
. . . . 5
β’ π = βͺ
π½ |
10 | 9 | neiss2 13645 |
. . . 4
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β π) |
11 | 9 | isnei 13647 |
. . . 4
β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
12 | 10, 11 | syldan 282 |
. . 3
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
13 | 12 | adantr 276 |
. 2
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
14 | 1, 8, 13 | mpbir2and 944 |
1
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β ((neiβπ½)βπ)) |