| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pmss12g | GIF version | ||
| Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| pmss12g | ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss12 4787 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐴 ⊆ 𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) | |
| 2 | 1 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) |
| 3 | sstr 3203 | . . . . . . 7 ⊢ ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶)) | |
| 4 | 3 | expcom 116 | . . . . . 6 ⊢ ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
| 5 | 2, 4 | syl 14 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
| 6 | 5 | anim2d 337 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
| 7 | 6 | adantr 276 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
| 8 | ssexg 4188 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ V) | |
| 9 | ssexg 4188 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊) → 𝐵 ∈ V) | |
| 10 | elpmg 6761 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
| 11 | 8, 9, 10 | syl2an 289 | . . . 4 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) ∧ (𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
| 12 | 11 | an4s 588 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
| 13 | elpmg 6761 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) | |
| 14 | 13 | adantl 277 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
| 15 | 7, 12, 14 | 3imtr4d 203 | . 2 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ (𝐶 ↑pm 𝐷))) |
| 16 | 15 | ssrdv 3201 | 1 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3168 × cxp 4678 Fun wfun 5271 (class class class)co 5954 ↑pm cpm 6746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pm 6748 |
| This theorem is referenced by: lmres 14770 dvidsslem 15215 |
| Copyright terms: Public domain | W3C validator |