![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pmss12g | GIF version |
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
Ref | Expression |
---|---|
pmss12g | ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss12 4734 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐴 ⊆ 𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) | |
2 | 1 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) |
3 | sstr 3164 | . . . . . . 7 ⊢ ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶)) | |
4 | 3 | expcom 116 | . . . . . 6 ⊢ ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
5 | 2, 4 | syl 14 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
6 | 5 | anim2d 337 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
7 | 6 | adantr 276 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
8 | ssexg 4143 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ V) | |
9 | ssexg 4143 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊) → 𝐵 ∈ V) | |
10 | elpmg 6664 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
11 | 8, 9, 10 | syl2an 289 | . . . 4 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) ∧ (𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
12 | 11 | an4s 588 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
13 | elpmg 6664 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) | |
14 | 13 | adantl 277 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
15 | 7, 12, 14 | 3imtr4d 203 | . 2 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ (𝐶 ↑pm 𝐷))) |
16 | 15 | ssrdv 3162 | 1 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 Vcvv 2738 ⊆ wss 3130 × cxp 4625 Fun wfun 5211 (class class class)co 5875 ↑pm cpm 6649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pm 6651 |
This theorem is referenced by: lmres 13751 |
Copyright terms: Public domain | W3C validator |