![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pmss12g | GIF version |
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
Ref | Expression |
---|---|
pmss12g | ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss12 4766 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐴 ⊆ 𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) | |
2 | 1 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) |
3 | sstr 3187 | . . . . . . 7 ⊢ ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶)) | |
4 | 3 | expcom 116 | . . . . . 6 ⊢ ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
5 | 2, 4 | syl 14 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
6 | 5 | anim2d 337 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
7 | 6 | adantr 276 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
8 | ssexg 4168 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ V) | |
9 | ssexg 4168 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊) → 𝐵 ∈ V) | |
10 | elpmg 6718 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
11 | 8, 9, 10 | syl2an 289 | . . . 4 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) ∧ (𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
12 | 11 | an4s 588 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
13 | elpmg 6718 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) | |
14 | 13 | adantl 277 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
15 | 7, 12, 14 | 3imtr4d 203 | . 2 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ (𝐶 ↑pm 𝐷))) |
16 | 15 | ssrdv 3185 | 1 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 × cxp 4657 Fun wfun 5248 (class class class)co 5918 ↑pm cpm 6703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pm 6705 |
This theorem is referenced by: lmres 14416 |
Copyright terms: Public domain | W3C validator |