Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pmss12g | GIF version |
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
Ref | Expression |
---|---|
pmss12g | ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss12 4711 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐴 ⊆ 𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) | |
2 | 1 | ancoms 266 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) |
3 | sstr 3150 | . . . . . . 7 ⊢ ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶)) | |
4 | 3 | expcom 115 | . . . . . 6 ⊢ ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
5 | 2, 4 | syl 14 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
6 | 5 | anim2d 335 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
7 | 6 | adantr 274 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
8 | ssexg 4121 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ V) | |
9 | ssexg 4121 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊) → 𝐵 ∈ V) | |
10 | elpmg 6630 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
11 | 8, 9, 10 | syl2an 287 | . . . 4 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) ∧ (𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
12 | 11 | an4s 578 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
13 | elpmg 6630 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) | |
14 | 13 | adantl 275 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
15 | 7, 12, 14 | 3imtr4d 202 | . 2 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ (𝐶 ↑pm 𝐷))) |
16 | 15 | ssrdv 3148 | 1 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 × cxp 4602 Fun wfun 5182 (class class class)co 5842 ↑pm cpm 6615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pm 6617 |
This theorem is referenced by: lmres 12888 |
Copyright terms: Public domain | W3C validator |