ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmss12g GIF version

Theorem pmss12g 6705
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmss12g (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))

Proof of Theorem pmss12g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xpss12 4754 . . . . . . 7 ((𝐵𝐷𝐴𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
21ancoms 268 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
3 sstr 3178 . . . . . . 7 ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶))
43expcom 116 . . . . . 6 ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
52, 4syl 14 . . . . 5 ((𝐴𝐶𝐵𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
65anim2d 337 . . . 4 ((𝐴𝐶𝐵𝐷) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
76adantr 276 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
8 ssexg 4160 . . . . 5 ((𝐴𝐶𝐶𝑉) → 𝐴 ∈ V)
9 ssexg 4160 . . . . 5 ((𝐵𝐷𝐷𝑊) → 𝐵 ∈ V)
10 elpmg 6694 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
118, 9, 10syl2an 289 . . . 4 (((𝐴𝐶𝐶𝑉) ∧ (𝐵𝐷𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
1211an4s 588 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
13 elpmg 6694 . . . 4 ((𝐶𝑉𝐷𝑊) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
1413adantl 277 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
157, 12, 143imtr4d 203 . 2 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ∈ (𝐶pm 𝐷)))
1615ssrdv 3176 1 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2160  Vcvv 2752  wss 3144   × cxp 4645  Fun wfun 5232  (class class class)co 5900  pm cpm 6679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-iota 5199  df-fun 5240  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pm 6681
This theorem is referenced by:  lmres  14233
  Copyright terms: Public domain W3C validator