| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > discld | GIF version | ||
| Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| discld | ⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop 14405 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
| 2 | unipw 4251 | . . . . . . 7 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 3 | 2 | eqcomi 2200 | . . . . . 6 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 4 | 3 | iscld 14423 | . . . . 5 ⊢ (𝒫 𝐴 ∈ Top → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴))) |
| 5 | 1, 4 | syl 14 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴))) |
| 6 | difss 3290 | . . . . . 6 ⊢ (𝐴 ∖ 𝑥) ⊆ 𝐴 | |
| 7 | elpw2g 4190 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝑥) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝑥) ⊆ 𝐴)) | |
| 8 | 6, 7 | mpbiri 168 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴) |
| 9 | 8 | biantrud 304 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ⊆ 𝐴 ↔ (𝑥 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴))) |
| 10 | 5, 9 | bitr4d 191 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ⊆ 𝐴)) |
| 11 | velpw 3613 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 12 | 10, 11 | bitr4di 198 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ∈ 𝒫 𝐴)) |
| 13 | 12 | eqrdv 2194 | 1 ⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∖ cdif 3154 ⊆ wss 3157 𝒫 cpw 3606 ∪ cuni 3840 ‘cfv 5259 Topctop 14317 Clsdccld 14412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-top 14318 df-cld 14415 |
| This theorem is referenced by: sn0cld 14457 |
| Copyright terms: Public domain | W3C validator |