ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  discld GIF version

Theorem discld 14678
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
discld (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)

Proof of Theorem discld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 distop 14627 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 unipw 4268 . . . . . . 7 𝒫 𝐴 = 𝐴
32eqcomi 2210 . . . . . 6 𝐴 = 𝒫 𝐴
43iscld 14645 . . . . 5 (𝒫 𝐴 ∈ Top → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
51, 4syl 14 . . . 4 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
6 difss 3303 . . . . . 6 (𝐴𝑥) ⊆ 𝐴
7 elpw2g 4207 . . . . . 6 (𝐴𝑉 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
86, 7mpbiri 168 . . . . 5 (𝐴𝑉 → (𝐴𝑥) ∈ 𝒫 𝐴)
98biantrud 304 . . . 4 (𝐴𝑉 → (𝑥𝐴 ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
105, 9bitr4d 191 . . 3 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥𝐴))
11 velpw 3627 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1210, 11bitr4di 198 . 2 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ∈ 𝒫 𝐴))
1312eqrdv 2204 1 (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  cdif 3167  wss 3170  𝒫 cpw 3620   cuni 3855  cfv 5279  Topctop 14539  Clsdccld 14634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-iota 5240  df-fun 5281  df-fv 5287  df-top 14540  df-cld 14637
This theorem is referenced by:  sn0cld  14679
  Copyright terms: Public domain W3C validator