ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndivdvds GIF version

Theorem nndivdvds 11980
Description: Strong form of dvdsval2 11974 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
nndivdvds ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))

Proof of Theorem nndivdvds
StepHypRef Expression
1 nnz 9364 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
21adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
3 nnne0 9037 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
43adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
5 nnz 9364 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
65adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
7 dvdsval2 11974 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
82, 4, 6, 7syl3anc 1249 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
98anbi1d 465 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
10 nnre 9016 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1110adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
12 nnre 9016 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1312adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
14 nngt0 9034 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
1514adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
16 nngt0 9034 . . . . 5 (𝐵 ∈ ℕ → 0 < 𝐵)
1716adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
1811, 13, 15, 17divgt0d 8981 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵))
1918biantrud 304 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐵𝐴 ∧ 0 < (𝐴 / 𝐵))))
20 elnnz 9355 . . 3 ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))
2120a1i 9 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
229, 19, 213bitr4d 220 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  wne 2367   class class class wbr 4034  (class class class)co 5925  cr 7897  0cc0 7898   < clt 8080   / cdiv 8718  cn 9009  cz 9345  cdvds 11971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-n0 9269  df-z 9346  df-dvds 11972
This theorem is referenced by:  nndivides  11981  dvdsdivcl  12034  divgcdnn  12169  lcmgcdlem  12272  isprm6  12342  oddpwdclemodd  12367  oddpwdclemdc  12368  divnumden  12391  hashgcdlem  12433  hashgcdeq  12435  oddprmdvds  12550  infpnlem2  12556  infpn2  12700  znrrg  14294  mersenne  15341  perfectlem1  15343  perfect  15345
  Copyright terms: Public domain W3C validator