| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndivdvds | GIF version | ||
| Description: Strong form of dvdsval2 11974 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| Ref | Expression |
|---|---|
| nndivdvds | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 9364 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ) |
| 3 | nnne0 9037 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0) |
| 5 | nnz 9364 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ) |
| 7 | dvdsval2 11974 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) | |
| 8 | 2, 4, 6, 7 | syl3anc 1249 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) |
| 9 | 8 | anbi1d 465 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) |
| 10 | nnre 9016 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 12 | nnre 9016 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
| 13 | 12 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
| 14 | nngt0 9034 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 15 | 14 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴) |
| 16 | nngt0 9034 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
| 17 | 16 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
| 18 | 11, 13, 15, 17 | divgt0d 8981 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵)) |
| 19 | 18 | biantrud 304 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)))) |
| 20 | elnnz 9355 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))) | |
| 21 | 20 | a1i 9 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) |
| 22 | 9, 19, 21 | 3bitr4d 220 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 (class class class)co 5925 ℝcr 7897 0cc0 7898 < clt 8080 / cdiv 8718 ℕcn 9009 ℤcz 9345 ∥ cdvds 11971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-n0 9269 df-z 9346 df-dvds 11972 |
| This theorem is referenced by: nndivides 11981 dvdsdivcl 12034 divgcdnn 12169 lcmgcdlem 12272 isprm6 12342 oddpwdclemodd 12367 oddpwdclemdc 12368 divnumden 12391 hashgcdlem 12433 hashgcdeq 12435 oddprmdvds 12550 infpnlem2 12556 infpn2 12700 znrrg 14294 mersenne 15341 perfectlem1 15343 perfect 15345 |
| Copyright terms: Public domain | W3C validator |