| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndivdvds | GIF version | ||
| Description: Strong form of dvdsval2 12134 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| Ref | Expression |
|---|---|
| nndivdvds | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 9393 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ) |
| 3 | nnne0 9066 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0) |
| 5 | nnz 9393 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ) |
| 7 | dvdsval2 12134 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) | |
| 8 | 2, 4, 6, 7 | syl3anc 1250 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) |
| 9 | 8 | anbi1d 465 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) |
| 10 | nnre 9045 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 12 | nnre 9045 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
| 13 | 12 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
| 14 | nngt0 9063 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 15 | 14 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴) |
| 16 | nngt0 9063 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
| 17 | 16 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
| 18 | 11, 13, 15, 17 | divgt0d 9010 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵)) |
| 19 | 18 | biantrud 304 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)))) |
| 20 | elnnz 9384 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))) | |
| 21 | 20 | a1i 9 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) |
| 22 | 9, 19, 21 | 3bitr4d 220 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 ≠ wne 2376 class class class wbr 4045 (class class class)co 5946 ℝcr 7926 0cc0 7927 < clt 8109 / cdiv 8747 ℕcn 9038 ℤcz 9374 ∥ cdvds 12131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-n0 9298 df-z 9375 df-dvds 12132 |
| This theorem is referenced by: nndivides 12141 dvdsdivcl 12194 divgcdnn 12329 lcmgcdlem 12432 isprm6 12502 oddpwdclemodd 12527 oddpwdclemdc 12528 divnumden 12551 hashgcdlem 12593 hashgcdeq 12595 oddprmdvds 12710 infpnlem2 12716 infpn2 12860 znrrg 14455 mersenne 15502 perfectlem1 15504 perfect 15506 |
| Copyright terms: Public domain | W3C validator |