Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnpi GIF version

Theorem cncnpi 12413
 Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1 𝑋 = 𝐽
Assertion
Ref Expression
cncnpi ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))

Proof of Theorem cncnpi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4 𝑋 = 𝐽
2 eqid 2139 . . . 4 𝐾 = 𝐾
31, 2cnf 12389 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
43adantr 274 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋 𝐾)
5 cnima 12405 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
65ad2ant2r 500 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐹𝑦) ∈ 𝐽)
7 simpr 109 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴𝑋)
87adantr 274 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐴𝑋)
9 simprr 521 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐹𝐴) ∈ 𝑦)
103ad2antrr 479 . . . . . . 7 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐹:𝑋 𝐾)
11 ffn 5272 . . . . . . 7 (𝐹:𝑋 𝐾𝐹 Fn 𝑋)
12 elpreima 5539 . . . . . . 7 (𝐹 Fn 𝑋 → (𝐴 ∈ (𝐹𝑦) ↔ (𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑦)))
1310, 11, 123syl 17 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐴 ∈ (𝐹𝑦) ↔ (𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑦)))
148, 9, 13mpbir2and 928 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐴 ∈ (𝐹𝑦))
15 eqimss 3151 . . . . . . . 8 (𝑥 = (𝐹𝑦) → 𝑥 ⊆ (𝐹𝑦))
1615biantrud 302 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝐴𝑥 ↔ (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
17 eleq2 2203 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝐴𝑥𝐴 ∈ (𝐹𝑦)))
1816, 17bitr3d 189 . . . . . 6 (𝑥 = (𝐹𝑦) → ((𝐴𝑥𝑥 ⊆ (𝐹𝑦)) ↔ 𝐴 ∈ (𝐹𝑦)))
1918rspcev 2789 . . . . 5 (((𝐹𝑦) ∈ 𝐽𝐴 ∈ (𝐹𝑦)) → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦)))
206, 14, 19syl2anc 408 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦)))
2120expr 372 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑦𝐾) → ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
2221ralrimiva 2505 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
23 cntop1 12386 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2423adantr 274 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
251toptopon 12201 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
2624, 25sylib 121 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
27 cntop2 12387 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2827adantr 274 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
292toptopon 12201 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3028, 29sylib 121 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
31 iscnp3 12388 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))))
3226, 30, 7, 31syl3anc 1216 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))))
334, 22, 32mpbir2and 928 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417   ⊆ wss 3071  ∪ cuni 3736  ◡ccnv 4538   “ cima 4542   Fn wfn 5118  ⟶wf 5119  ‘cfv 5123  (class class class)co 5774  Topctop 12180  TopOnctopon 12193   Cn ccn 12370   CnP ccnp 12371 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12181  df-topon 12194  df-cn 12373  df-cnp 12374 This theorem is referenced by:  cnsscnp  12414  cncnp  12415  lmcn  12436  dvcnp2cntop  12848  dvaddxxbr  12850  dvmulxxbr  12851  dvcoapbr  12856  dvcjbr  12857
 Copyright terms: Public domain W3C validator