Step | Hyp | Ref
| Expression |
1 | | cnsscnp.1 |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
2 | | eqid 2165 |
. . . 4
⊢ ∪ 𝐾 =
∪ 𝐾 |
3 | 1, 2 | cnf 12844 |
. . 3
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
4 | 3 | adantr 274 |
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) |
5 | | cnima 12860 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ 𝐾) → (◡𝐹 “ 𝑦) ∈ 𝐽) |
6 | 5 | ad2ant2r 501 |
. . . . 5
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑦)) → (◡𝐹 “ 𝑦) ∈ 𝐽) |
7 | | simpr 109 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
8 | 7 | adantr 274 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑦)) → 𝐴 ∈ 𝑋) |
9 | | simprr 522 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑦)) → (𝐹‘𝐴) ∈ 𝑦) |
10 | 3 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑦)) → 𝐹:𝑋⟶∪ 𝐾) |
11 | | ffn 5337 |
. . . . . . 7
⊢ (𝐹:𝑋⟶∪ 𝐾 → 𝐹 Fn 𝑋) |
12 | | elpreima 5604 |
. . . . . . 7
⊢ (𝐹 Fn 𝑋 → (𝐴 ∈ (◡𝐹 “ 𝑦) ↔ (𝐴 ∈ 𝑋 ∧ (𝐹‘𝐴) ∈ 𝑦))) |
13 | 10, 11, 12 | 3syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑦)) → (𝐴 ∈ (◡𝐹 “ 𝑦) ↔ (𝐴 ∈ 𝑋 ∧ (𝐹‘𝐴) ∈ 𝑦))) |
14 | 8, 9, 13 | mpbir2and 934 |
. . . . 5
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑦)) → 𝐴 ∈ (◡𝐹 “ 𝑦)) |
15 | | eqimss 3196 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐹 “ 𝑦) → 𝑥 ⊆ (◡𝐹 “ 𝑦)) |
16 | 15 | biantrud 302 |
. . . . . . 7
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐴 ∈ 𝑥 ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))) |
17 | | eleq2 2230 |
. . . . . . 7
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ (◡𝐹 “ 𝑦))) |
18 | 16, 17 | bitr3d 189 |
. . . . . 6
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)) ↔ 𝐴 ∈ (◡𝐹 “ 𝑦))) |
19 | 18 | rspcev 2830 |
. . . . 5
⊢ (((◡𝐹 “ 𝑦) ∈ 𝐽 ∧ 𝐴 ∈ (◡𝐹 “ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦))) |
20 | 6, 14, 19 | syl2anc 409 |
. . . 4
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦))) |
21 | 20 | expr 373 |
. . 3
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝐴) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))) |
22 | 21 | ralrimiva 2539 |
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → ∀𝑦 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))) |
23 | | cntop1 12841 |
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
24 | 23 | adantr 274 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
25 | 1 | toptopon 12656 |
. . . 4
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
26 | 24, 25 | sylib 121 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
27 | | cntop2 12842 |
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
28 | 27 | adantr 274 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐾 ∈ Top) |
29 | 2 | toptopon 12656 |
. . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
30 | 28, 29 | sylib 121 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
31 | | iscnp3 12843 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) |
32 | 26, 30, 7, 31 | syl3anc 1228 |
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) |
33 | 4, 22, 32 | mpbir2and 934 |
1
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |