ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt1 GIF version

Theorem elrnmpt1 4880
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmpt1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)

Proof of Theorem elrnmpt1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . 4 𝑥 ∈ V
2 id 19 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
3 csbeq1a 3068 . . . . . . 7 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
42, 3eleq12d 2248 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
5 csbeq1a 3068 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65biantrud 304 . . . . . 6 (𝑥 = 𝑧 → (𝑧𝑧 / 𝑥𝐴 ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
74, 6bitr2d 189 . . . . 5 (𝑥 = 𝑧 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
87equcoms 1708 . . . 4 (𝑧 = 𝑥 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
91, 8spcev 2834 . . 3 (𝑥𝐴 → ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵))
10 df-rex 2461 . . . . . 6 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥𝐴𝑦 = 𝐵))
11 nfv 1528 . . . . . . 7 𝑧(𝑥𝐴𝑦 = 𝐵)
12 nfcsb1v 3092 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐴
1312nfcri 2313 . . . . . . . 8 𝑥 𝑧𝑧 / 𝑥𝐴
14 nfcsb1v 3092 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐵
1514nfeq2 2331 . . . . . . . 8 𝑥 𝑦 = 𝑧 / 𝑥𝐵
1613, 15nfan 1565 . . . . . . 7 𝑥(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)
175eqeq2d 2189 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
184, 17anbi12d 473 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)))
1911, 16, 18cbvex 1756 . . . . . 6 (∃𝑥(𝑥𝐴𝑦 = 𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
2010, 19bitri 184 . . . . 5 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
21 eqeq1 2184 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
2221anbi2d 464 . . . . . 6 (𝑦 = 𝐵 → ((𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2322exbidv 1825 . . . . 5 (𝑦 = 𝐵 → (∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2420, 23bitrid 192 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
25 rnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
2625rnmpt 4877 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
2724, 26elab2g 2886 . . 3 (𝐵𝑉 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
289, 27imbitrrid 156 . 2 (𝐵𝑉 → (𝑥𝐴𝐵 ∈ ran 𝐹))
2928impcom 125 1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wrex 2456  csb 3059  cmpt 4066  ran crn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by:  fliftel1  5797
  Copyright terms: Public domain W3C validator