| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnle1eq1 | GIF version | ||
| Description: A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.) |
| Ref | Expression |
|---|---|
| nnle1eq1 | ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1 9058 | . . 3 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 2 | 1 | biantrud 304 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ (𝐴 ≤ 1 ∧ 1 ≤ 𝐴))) |
| 3 | nnre 9042 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 4 | 1re 8070 | . . 3 ⊢ 1 ∈ ℝ | |
| 5 | letri3 8152 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 = 1 ↔ (𝐴 ≤ 1 ∧ 1 ≤ 𝐴))) | |
| 6 | 3, 4, 5 | sylancl 413 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ↔ (𝐴 ≤ 1 ∧ 1 ≤ 𝐴))) |
| 7 | 2, 6 | bitr4d 191 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ℝcr 7923 1c1 7925 ≤ cle 8107 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-iota 5231 df-fv 5278 df-ov 5946 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-inn 9036 |
| This theorem is referenced by: gcd1 12250 bezoutr1 12296 rpdvds 12363 isprm6 12411 qden1elz 12469 phimullem 12489 pockthlem 12621 znidomb 14362 zabsle1 15418 2sqlem8a 15541 2sqlem8 15542 |
| Copyright terms: Public domain | W3C validator |