| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnle1eq1 | GIF version | ||
| Description: A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.) |
| Ref | Expression |
|---|---|
| nnle1eq1 | ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1 9030 | . . 3 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 2 | 1 | biantrud 304 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ (𝐴 ≤ 1 ∧ 1 ≤ 𝐴))) |
| 3 | nnre 9014 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 4 | 1re 8042 | . . 3 ⊢ 1 ∈ ℝ | |
| 5 | letri3 8124 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 = 1 ↔ (𝐴 ≤ 1 ∧ 1 ≤ 𝐴))) | |
| 6 | 3, 4, 5 | sylancl 413 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ↔ (𝐴 ≤ 1 ∧ 1 ≤ 𝐴))) |
| 7 | 2, 6 | bitr4d 191 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 1c1 7897 ≤ cle 8079 ℕcn 9007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-inn 9008 |
| This theorem is referenced by: gcd1 12179 bezoutr1 12225 rpdvds 12292 isprm6 12340 qden1elz 12398 phimullem 12418 pockthlem 12550 znidomb 14290 zabsle1 15324 2sqlem8a 15447 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |