![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elxp7 | GIF version |
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5108. (Contributed by NM, 19-Aug-2006.) |
Ref | Expression |
---|---|
elxp7 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2746 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) | |
2 | elex 2746 | . . 3 ⊢ (𝐴 ∈ (V × V) → 𝐴 ∈ V) | |
3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 𝐴 ∈ V) |
4 | elxp6 6160 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
5 | elxp6 6160 | . . . . 5 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
6 | 1stexg 6158 | . . . . . . 7 ⊢ (𝐴 ∈ V → (1st ‘𝐴) ∈ V) | |
7 | 2ndexg 6159 | . . . . . . 7 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) ∈ V) | |
8 | 6, 7 | jca 306 | . . . . . 6 ⊢ (𝐴 ∈ V → ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V)) |
9 | 8 | biantrud 304 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V)))) |
10 | 5, 9 | bitr4id 199 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉)) |
11 | 10 | anbi1d 465 | . . 3 ⊢ (𝐴 ∈ V → ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)))) |
12 | 4, 11 | bitr4id 199 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)))) |
13 | 1, 3, 12 | pm5.21nii 704 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 Vcvv 2735 〈cop 3592 × cxp 4618 ‘cfv 5208 1st c1st 6129 2nd c2nd 6130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fo 5214 df-fv 5216 df-1st 6131 df-2nd 6132 |
This theorem is referenced by: xp2 6164 unielxp 6165 1stconst 6212 2ndconst 6213 f1od2 6226 |
Copyright terms: Public domain | W3C validator |