![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elxp7 | GIF version |
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5154. (Contributed by NM, 19-Aug-2006.) |
Ref | Expression |
---|---|
elxp7 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) | |
2 | elex 2771 | . . 3 ⊢ (𝐴 ∈ (V × V) → 𝐴 ∈ V) | |
3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 𝐴 ∈ V) |
4 | elxp6 6224 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
5 | elxp6 6224 | . . . . 5 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
6 | 1stexg 6222 | . . . . . . 7 ⊢ (𝐴 ∈ V → (1st ‘𝐴) ∈ V) | |
7 | 2ndexg 6223 | . . . . . . 7 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) ∈ V) | |
8 | 6, 7 | jca 306 | . . . . . 6 ⊢ (𝐴 ∈ V → ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V)) |
9 | 8 | biantrud 304 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V)))) |
10 | 5, 9 | bitr4id 199 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉)) |
11 | 10 | anbi1d 465 | . . 3 ⊢ (𝐴 ∈ V → ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)))) |
12 | 4, 11 | bitr4id 199 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)))) |
13 | 1, 3, 12 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3622 × cxp 4658 ‘cfv 5255 1st c1st 6193 2nd c2nd 6194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fo 5261 df-fv 5263 df-1st 6195 df-2nd 6196 |
This theorem is referenced by: xp2 6228 unielxp 6229 1stconst 6276 2ndconst 6277 f1od2 6290 |
Copyright terms: Public domain | W3C validator |