ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp7 GIF version

Theorem elxp7 6274
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5184. (Contributed by NM, 19-Aug-2006.)
Assertion
Ref Expression
elxp7 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))

Proof of Theorem elxp7
StepHypRef Expression
1 elex 2785 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V)
2 elex 2785 . . 3 (𝐴 ∈ (V × V) → 𝐴 ∈ V)
32adantr 276 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴 ∈ V)
4 elxp6 6273 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
5 elxp6 6273 . . . . 5 (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V)))
6 1stexg 6271 . . . . . . 7 (𝐴 ∈ V → (1st𝐴) ∈ V)
7 2ndexg 6272 . . . . . . 7 (𝐴 ∈ V → (2nd𝐴) ∈ V)
86, 7jca 306 . . . . . 6 (𝐴 ∈ V → ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V))
98biantrud 304 . . . . 5 (𝐴 ∈ V → (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V))))
105, 9bitr4id 199 . . . 4 (𝐴 ∈ V → (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩))
1110anbi1d 465 . . 3 (𝐴 ∈ V → ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))))
124, 11bitr4id 199 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))))
131, 3, 12pm5.21nii 706 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  cop 3641   × cxp 4686  cfv 5285  1st c1st 6242  2nd c2nd 6243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fo 5291  df-fv 5293  df-1st 6244  df-2nd 6245
This theorem is referenced by:  xp2  6277  unielxp  6278  1stconst  6325  2ndconst  6326  f1od2  6339
  Copyright terms: Public domain W3C validator