| Step | Hyp | Ref
| Expression |
| 1 | | trilpolemclim.g |
. . . 4
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) |
| 2 | | oveq2 5930 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) |
| 3 | 2 | oveq2d 5938 |
. . . . 5
⊢ (𝑛 = 𝑘 → (1 / (2↑𝑛)) = (1 / (2↑𝑘))) |
| 4 | | fveq2 5558 |
. . . . 5
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
| 5 | 3, 4 | oveq12d 5940 |
. . . 4
⊢ (𝑛 = 𝑘 → ((1 / (2↑𝑛)) · (𝐹‘𝑛)) = ((1 / (2↑𝑘)) · (𝐹‘𝑘))) |
| 6 | | simpr 110 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 7 | | 2rp 9733 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
| 8 | 7 | a1i 9 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℝ+) |
| 9 | 6 | nnzd 9447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
| 10 | 8, 9 | rpexpcld 10789 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2↑𝑘) ∈
ℝ+) |
| 11 | 10 | rpreccld 9782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (2↑𝑘)) ∈
ℝ+) |
| 12 | 11 | rpred 9771 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (2↑𝑘)) ∈
ℝ) |
| 13 | | simpr 110 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐹‘𝑘) = 0) |
| 14 | | 0re 8026 |
. . . . . . 7
⊢ 0 ∈
ℝ |
| 15 | 13, 14 | eqeltrdi 2287 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐹‘𝑘) ∈ ℝ) |
| 16 | | simpr 110 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐹‘𝑘) = 1) |
| 17 | | 1re 8025 |
. . . . . . 7
⊢ 1 ∈
ℝ |
| 18 | 16, 17 | eqeltrdi 2287 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐹‘𝑘) ∈ ℝ) |
| 19 | | trilpolemgt1.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
| 20 | 19 | ffvelcdmda 5697 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ {0, 1}) |
| 21 | | elpri 3645 |
. . . . . . 7
⊢ ((𝐹‘𝑘) ∈ {0, 1} → ((𝐹‘𝑘) = 0 ∨ (𝐹‘𝑘) = 1)) |
| 22 | 20, 21 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) = 0 ∨ (𝐹‘𝑘) = 1)) |
| 23 | 15, 18, 22 | mpjaodan 799 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
| 24 | 12, 23 | remulcld 8057 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / (2↑𝑘)) · (𝐹‘𝑘)) ∈ ℝ) |
| 25 | 1, 5, 6, 24 | fvmptd3 5655 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = ((1 / (2↑𝑘)) · (𝐹‘𝑘))) |
| 26 | 25, 24 | eqeltrd 2273 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
| 27 | 11 | rpge0d 9775 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 /
(2↑𝑘))) |
| 28 | | 0le0 9079 |
. . . . . 6
⊢ 0 ≤
0 |
| 29 | 28, 13 | breqtrrid 4071 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → 0 ≤ (𝐹‘𝑘)) |
| 30 | | 0le1 8508 |
. . . . . 6
⊢ 0 ≤
1 |
| 31 | 30, 16 | breqtrrid 4071 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → 0 ≤ (𝐹‘𝑘)) |
| 32 | 29, 31, 22 | mpjaodan 799 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) |
| 33 | 12, 23, 27, 32 | mulge0d 8648 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 /
(2↑𝑘)) · (𝐹‘𝑘))) |
| 34 | 33, 25 | breqtrrd 4061 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) |
| 35 | 25 | adantr 276 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐺‘𝑘) = ((1 / (2↑𝑘)) · (𝐹‘𝑘))) |
| 36 | 13 | oveq2d 5938 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → ((1 / (2↑𝑘)) · (𝐹‘𝑘)) = ((1 / (2↑𝑘)) · 0)) |
| 37 | 11 | rpcnd 9773 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (2↑𝑘)) ∈
ℂ) |
| 38 | 37 | adantr 276 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (1 / (2↑𝑘)) ∈ ℂ) |
| 39 | 38 | mul01d 8419 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → ((1 / (2↑𝑘)) · 0) =
0) |
| 40 | 35, 36, 39 | 3eqtrd 2233 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐺‘𝑘) = 0) |
| 41 | 27 | adantr 276 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → 0 ≤ (1 / (2↑𝑘))) |
| 42 | 40, 41 | eqbrtrd 4055 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
| 43 | 25 | adantr 276 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐺‘𝑘) = ((1 / (2↑𝑘)) · (𝐹‘𝑘))) |
| 44 | 16 | oveq2d 5938 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → ((1 / (2↑𝑘)) · (𝐹‘𝑘)) = ((1 / (2↑𝑘)) · 1)) |
| 45 | 37 | adantr 276 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (1 / (2↑𝑘)) ∈ ℂ) |
| 46 | 45 | mulridd 8043 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → ((1 / (2↑𝑘)) · 1) = (1 /
(2↑𝑘))) |
| 47 | 43, 44, 46 | 3eqtrd 2233 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐺‘𝑘) = (1 / (2↑𝑘))) |
| 48 | 12 | adantr 276 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (1 / (2↑𝑘)) ∈ ℝ) |
| 49 | 48 | leidd 8541 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (1 / (2↑𝑘)) ≤ (1 / (2↑𝑘))) |
| 50 | 47, 49 | eqbrtrd 4055 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
| 51 | 42, 50, 22 | mpjaodan 799 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
| 52 | 26, 34, 51 | cvgcmp2n 15677 |
1
⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝
) |