Step | Hyp | Ref
| Expression |
1 | | trilpolemclim.g |
. . . 4
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) |
2 | | oveq2 5861 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) |
3 | 2 | oveq2d 5869 |
. . . . 5
⊢ (𝑛 = 𝑘 → (1 / (2↑𝑛)) = (1 / (2↑𝑘))) |
4 | | fveq2 5496 |
. . . . 5
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
5 | 3, 4 | oveq12d 5871 |
. . . 4
⊢ (𝑛 = 𝑘 → ((1 / (2↑𝑛)) · (𝐹‘𝑛)) = ((1 / (2↑𝑘)) · (𝐹‘𝑘))) |
6 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
7 | | 2rp 9615 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
8 | 7 | a1i 9 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℝ+) |
9 | 6 | nnzd 9333 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
10 | 8, 9 | rpexpcld 10633 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2↑𝑘) ∈
ℝ+) |
11 | 10 | rpreccld 9664 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (2↑𝑘)) ∈
ℝ+) |
12 | 11 | rpred 9653 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (2↑𝑘)) ∈
ℝ) |
13 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐹‘𝑘) = 0) |
14 | | 0re 7920 |
. . . . . . 7
⊢ 0 ∈
ℝ |
15 | 13, 14 | eqeltrdi 2261 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐹‘𝑘) ∈ ℝ) |
16 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐹‘𝑘) = 1) |
17 | | 1re 7919 |
. . . . . . 7
⊢ 1 ∈
ℝ |
18 | 16, 17 | eqeltrdi 2261 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐹‘𝑘) ∈ ℝ) |
19 | | trilpolemgt1.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
20 | 19 | ffvelrnda 5631 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ {0, 1}) |
21 | | elpri 3606 |
. . . . . . 7
⊢ ((𝐹‘𝑘) ∈ {0, 1} → ((𝐹‘𝑘) = 0 ∨ (𝐹‘𝑘) = 1)) |
22 | 20, 21 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) = 0 ∨ (𝐹‘𝑘) = 1)) |
23 | 15, 18, 22 | mpjaodan 793 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
24 | 12, 23 | remulcld 7950 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / (2↑𝑘)) · (𝐹‘𝑘)) ∈ ℝ) |
25 | 1, 5, 6, 24 | fvmptd3 5589 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = ((1 / (2↑𝑘)) · (𝐹‘𝑘))) |
26 | 25, 24 | eqeltrd 2247 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
27 | 11 | rpge0d 9657 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 /
(2↑𝑘))) |
28 | | 0le0 8967 |
. . . . . 6
⊢ 0 ≤
0 |
29 | 28, 13 | breqtrrid 4027 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → 0 ≤ (𝐹‘𝑘)) |
30 | | 0le1 8400 |
. . . . . 6
⊢ 0 ≤
1 |
31 | 30, 16 | breqtrrid 4027 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → 0 ≤ (𝐹‘𝑘)) |
32 | 29, 31, 22 | mpjaodan 793 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) |
33 | 12, 23, 27, 32 | mulge0d 8540 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 /
(2↑𝑘)) · (𝐹‘𝑘))) |
34 | 33, 25 | breqtrrd 4017 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) |
35 | 25 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐺‘𝑘) = ((1 / (2↑𝑘)) · (𝐹‘𝑘))) |
36 | 13 | oveq2d 5869 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → ((1 / (2↑𝑘)) · (𝐹‘𝑘)) = ((1 / (2↑𝑘)) · 0)) |
37 | 11 | rpcnd 9655 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (2↑𝑘)) ∈
ℂ) |
38 | 37 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (1 / (2↑𝑘)) ∈ ℂ) |
39 | 38 | mul01d 8312 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → ((1 / (2↑𝑘)) · 0) =
0) |
40 | 35, 36, 39 | 3eqtrd 2207 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐺‘𝑘) = 0) |
41 | 27 | adantr 274 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → 0 ≤ (1 / (2↑𝑘))) |
42 | 40, 41 | eqbrtrd 4011 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 0) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
43 | 25 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐺‘𝑘) = ((1 / (2↑𝑘)) · (𝐹‘𝑘))) |
44 | 16 | oveq2d 5869 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → ((1 / (2↑𝑘)) · (𝐹‘𝑘)) = ((1 / (2↑𝑘)) · 1)) |
45 | 37 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (1 / (2↑𝑘)) ∈ ℂ) |
46 | 45 | mulid1d 7937 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → ((1 / (2↑𝑘)) · 1) = (1 /
(2↑𝑘))) |
47 | 43, 44, 46 | 3eqtrd 2207 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐺‘𝑘) = (1 / (2↑𝑘))) |
48 | 12 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (1 / (2↑𝑘)) ∈ ℝ) |
49 | 48 | leidd 8433 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (1 / (2↑𝑘)) ≤ (1 / (2↑𝑘))) |
50 | 47, 49 | eqbrtrd 4011 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝐹‘𝑘) = 1) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
51 | 42, 50, 22 | mpjaodan 793 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
52 | 26, 34, 51 | cvgcmp2n 14065 |
1
⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝
) |