Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolemgt0 GIF version

Theorem nconstwlpolemgt0 15291
Description: Lemma for nconstwlpo 15293. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpolem0.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpolem0.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
nconstwlpolemgt0.0 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
Assertion
Ref Expression
nconstwlpolemgt0 (𝜑 → 0 < 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑖,𝐺   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝐺(𝑥)

Proof of Theorem nconstwlpolemgt0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nconstwlpolemgt0.0 . 2 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
2 1zzd 9311 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℤ)
3 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℕ)
43peano2nnd 8965 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℕ)
54nnzd 9405 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℤ)
65, 2zsubcld 9411 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) ∈ ℤ)
72, 6fzfigd 10464 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) ∈ Fin)
8 elfznn 10086 . . . . . . 7 (𝑖 ∈ (1...((𝑥 + 1) − 1)) → 𝑖 ∈ ℕ)
9 2rp 9690 . . . . . . . . . . . 12 2 ∈ ℝ+
109a1i 9 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
11 simpr 110 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
1211nnzd 9405 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1310, 12rpexpcld 10712 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1413rpreccld 9739 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1514rpred 9728 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
16 0re 7988 . . . . . . . . . 10 0 ∈ ℝ
17 1re 7987 . . . . . . . . . 10 1 ∈ ℝ
18 prssi 3765 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
1916, 17, 18mp2an 426 . . . . . . . . 9 {0, 1} ⊆ ℝ
20 nconstwlpolem0.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶{0, 1})
2120ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝐺:ℕ⟶{0, 1})
2221, 11ffvelcdmd 5673 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ {0, 1})
2319, 22sselid 3168 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
2415, 23remulcld 8019 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
258, 24sylan2 286 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1...((𝑥 + 1) − 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
267, 25fsumrecl 11444 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
27 eqid 2189 . . . . . 6 (ℤ‘(𝑥 + 1)) = (ℤ‘(𝑥 + 1))
28 eqid 2189 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))
29 oveq2 5905 . . . . . . . . 9 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
3029oveq2d 5913 . . . . . . . 8 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
31 fveq2 5534 . . . . . . . 8 (𝑛 = 𝑖 → (𝐺𝑛) = (𝐺𝑖))
3230, 31oveq12d 5915 . . . . . . 7 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐺𝑛)) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
33 eluznn 9632 . . . . . . . 8 (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
344, 33sylan 283 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
3534, 24syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
3628, 32, 34, 35fvmptd3 5630 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
3720, 28trilpolemclim 15263 . . . . . . . 8 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
3837adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
39 nnuz 9595 . . . . . . . 8 ℕ = (ℤ‘1)
4028, 32, 11, 24fvmptd3 5630 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
4124recnd 8017 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
4240, 41eqeltrd 2266 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) ∈ ℂ)
4339, 4, 42iserex 11382 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ))
4438, 43mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
4527, 5, 36, 35, 44isumrecl 11472 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
463nnzd 9405 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℤ)
47 fzofig 10465 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (1..^𝑥) ∈ Fin)
482, 46, 47syl2anc 411 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1..^𝑥) ∈ Fin)
49 elfzo1 10222 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑥) ↔ (𝑖 ∈ ℕ ∧ 𝑥 ∈ ℕ ∧ 𝑖 < 𝑥))
5049simp1bi 1014 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ)
5150, 24sylan2 286 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
5248, 51fsumrecl 11444 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
539a1i 9 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 2 ∈ ℝ+)
5453, 46rpexpcld 10712 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (2↑𝑥) ∈ ℝ+)
5554rpreccld 9739 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ+)
5655rpred 9728 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ)
5720adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝐺:ℕ⟶{0, 1})
5857, 3ffvelcdmd 5673 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ {0, 1})
5919, 58sselid 3168 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ ℝ)
6056, 59remulcld 8019 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℝ)
6114rpge0d 9732 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (1 / (2↑𝑖)))
62 0le0 9039 . . . . . . . . . . . . 13 0 ≤ 0
63 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → (𝐺𝑖) = 0)
6462, 63breqtrrid 4056 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → 0 ≤ (𝐺𝑖))
65 0le1 8469 . . . . . . . . . . . . 13 0 ≤ 1
66 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → (𝐺𝑖) = 1)
6765, 66breqtrrid 4056 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → 0 ≤ (𝐺𝑖))
68 elpri 3630 . . . . . . . . . . . . 13 ((𝐺𝑖) ∈ {0, 1} → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
6922, 68syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
7064, 67, 69mpjaodan 799 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (𝐺𝑖))
7115, 23, 61, 70mulge0d 8609 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7250, 71sylan2 286 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7348, 51, 72fsumge0 11502 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)))
7455rpgt0d 9731 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (1 / (2↑𝑥)))
75 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) = 1)
7675oveq2d 5913 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = ((1 / (2↑𝑥)) · 1))
7756recnd 8017 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℂ)
7877mulridd 8005 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · 1) = (1 / (2↑𝑥)))
7976, 78eqtrd 2222 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = (1 / (2↑𝑥)))
8074, 79breqtrrd 4046 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < ((1 / (2↑𝑥)) · (𝐺𝑥)))
8152, 60, 73, 80addgegt0d 8507 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
82 nfv 1539 . . . . . . . 8 𝑖(𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1))
83 nfcv 2332 . . . . . . . 8 𝑖((1 / (2↑𝑥)) · (𝐺𝑥))
84 fzonel 10192 . . . . . . . . 9 ¬ 𝑥 ∈ (1..^𝑥)
8584a1i 9 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ¬ 𝑥 ∈ (1..^𝑥))
8650, 41sylan2 286 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
87 oveq2 5905 . . . . . . . . . 10 (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥))
8887oveq2d 5913 . . . . . . . . 9 (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥)))
89 fveq2 5534 . . . . . . . . 9 (𝑖 = 𝑥 → (𝐺𝑖) = (𝐺𝑥))
9088, 89oveq12d 5915 . . . . . . . 8 (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐺𝑖)) = ((1 / (2↑𝑥)) · (𝐺𝑥)))
9160recnd 8017 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℂ)
9282, 83, 48, 3, 85, 86, 90, 91fsumsplitsn 11453 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
9381, 92breqtrrd 4046 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
943nncnd 8964 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℂ)
95 1cnd 8004 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℂ)
9694, 95pncand 8300 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) = 𝑥)
9796oveq2d 5913 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = (1...𝑥))
983, 39eleqtrdi 2282 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ (ℤ‘1))
99 fzisfzounsn 10268 . . . . . . . . 9 (𝑥 ∈ (ℤ‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10098, 99syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10197, 100eqtrd 2222 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥}))
102101sumeq1d 11409 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
10393, 102breqtrrd 4046 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
10434, 15syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
10534, 23syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (𝐺𝑖) ∈ ℝ)
10634, 14syldan 282 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
107106rpge0d 9732 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (1 / (2↑𝑖)))
10834, 70syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (𝐺𝑖))
109104, 105, 107, 108mulge0d 8609 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
11027, 5, 36, 35, 44, 109isumge0 11473 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
11126, 45, 103, 110addgtge0d 8508 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
11239, 27, 4, 40, 41, 38isumsplit 11534 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
113111, 112breqtrrd 4046 . . 3 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)))
114 nconstwlpolem0.a . . 3 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
115113, 114breqtrrdi 4060 . 2 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < 𝐴)
1161, 115rexlimddv 2612 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2160  wrex 2469  cun 3142  wss 3144  {csn 3607  {cpr 3608   class class class wbr 4018  cmpt 4079  dom cdm 4644  wf 5231  cfv 5235  (class class class)co 5897  Fincfn 6767  cc 7840  cr 7841  0cc0 7842  1c1 7843   + caddc 7845   · cmul 7847   < clt 8023  cle 8024  cmin 8159   / cdiv 8660  cn 8950  2c2 9001  cz 9284  cuz 9559  +crp 9685  ...cfz 10040  ..^cfzo 10174  seqcseq 10478  cexp 10553  cli 11321  Σcsu 11396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-ico 9926  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397
This theorem is referenced by:  nconstwlpolem  15292
  Copyright terms: Public domain W3C validator