Step | Hyp | Ref
| Expression |
1 | | nconstwlpolemgt0.0 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐺‘𝑥) = 1) |
2 | | 1zzd 9218 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 1 ∈
ℤ) |
3 | | simprl 521 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝑥 ∈ ℕ) |
4 | 3 | peano2nnd 8872 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝑥 + 1) ∈ ℕ) |
5 | 4 | nnzd 9312 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝑥 + 1) ∈ ℤ) |
6 | 5, 2 | zsubcld 9318 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((𝑥 + 1) − 1) ∈
ℤ) |
7 | 2, 6 | fzfigd 10366 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1...((𝑥 + 1) − 1)) ∈
Fin) |
8 | | elfznn 9989 |
. . . . . . 7
⊢ (𝑖 ∈ (1...((𝑥 + 1) − 1)) → 𝑖 ∈
ℕ) |
9 | | 2rp 9594 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ+ |
10 | 9 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 2 ∈
ℝ+) |
11 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
12 | 11 | nnzd 9312 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
13 | 10, 12 | rpexpcld 10612 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈
ℝ+) |
14 | 13 | rpreccld 9643 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ+) |
15 | 14 | rpred 9632 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ) |
16 | | 0re 7899 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
17 | | 1re 7898 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
18 | | prssi 3731 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆
ℝ) |
19 | 16, 17, 18 | mp2an 423 |
. . . . . . . . 9
⊢ {0, 1}
⊆ ℝ |
20 | | nconstwlpolem0.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) |
21 | 20 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝐺:ℕ⟶{0, 1}) |
22 | 21, 11 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺‘𝑖) ∈ {0, 1}) |
23 | 19, 22 | sselid 3140 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺‘𝑖) ∈ ℝ) |
24 | 15, 23 | remulcld 7929 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
25 | 8, 24 | sylan2 284 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (1...((𝑥 + 1) − 1))) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
26 | 7, 25 | fsumrecl 11342 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
27 | | eqid 2165 |
. . . . . 6
⊢
(ℤ≥‘(𝑥 + 1)) = (ℤ≥‘(𝑥 + 1)) |
28 | | eqid 2165 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐺‘𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛))) |
29 | | oveq2 5850 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖)) |
30 | 29 | oveq2d 5858 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖))) |
31 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → (𝐺‘𝑛) = (𝐺‘𝑖)) |
32 | 30, 31 | oveq12d 5860 |
. . . . . . 7
⊢ (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐺‘𝑛)) = ((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
33 | | eluznn 9538 |
. . . . . . . 8
⊢ (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘(𝑥 + 1))) → 𝑖 ∈ ℕ) |
34 | 4, 33 | sylan 281 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → 𝑖 ∈
ℕ) |
35 | 34, 24 | syldan 280 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → ((1 /
(2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
36 | 28, 32, 34, 35 | fvmptd3 5579 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐺‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
37 | 20, 28 | trilpolemclim 13915 |
. . . . . . . 8
⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ ) |
38 | 37 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ ) |
39 | | nnuz 9501 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
40 | 28, 32, 11, 24 | fvmptd3 5579 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
41 | 24 | recnd 7927 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℂ) |
42 | 40, 41 | eqeltrd 2243 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))‘𝑖) ∈ ℂ) |
43 | 39, 4, 42 | iserex 11280 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ )) |
44 | 38, 43 | mpbid 146 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ ) |
45 | 27, 5, 36, 35, 44 | isumrecl 11370 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
46 | 3 | nnzd 9312 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝑥 ∈ ℤ) |
47 | | fzofig 10367 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ 𝑥
∈ ℤ) → (1..^𝑥) ∈ Fin) |
48 | 2, 46, 47 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1..^𝑥) ∈ Fin) |
49 | | elfzo1 10125 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1..^𝑥) ↔ (𝑖 ∈ ℕ ∧ 𝑥 ∈ ℕ ∧ 𝑖 < 𝑥)) |
50 | 49 | simp1bi 1002 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ) |
51 | 50, 24 | sylan2 284 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
52 | 48, 51 | fsumrecl 11342 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
53 | 9 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 2 ∈
ℝ+) |
54 | 53, 46 | rpexpcld 10612 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (2↑𝑥) ∈
ℝ+) |
55 | 54 | rpreccld 9643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1 / (2↑𝑥)) ∈
ℝ+) |
56 | 55 | rpred 9632 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1 / (2↑𝑥)) ∈
ℝ) |
57 | 20 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝐺:ℕ⟶{0, 1}) |
58 | 57, 3 | ffvelrnd 5621 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝐺‘𝑥) ∈ {0, 1}) |
59 | 19, 58 | sselid 3140 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝐺‘𝑥) ∈ ℝ) |
60 | 56, 59 | remulcld 7929 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺‘𝑥)) ∈ ℝ) |
61 | 14 | rpge0d 9636 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (1 /
(2↑𝑖))) |
62 | | 0le0 8946 |
. . . . . . . . . . . . 13
⊢ 0 ≤
0 |
63 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺‘𝑖) = 0) → (𝐺‘𝑖) = 0) |
64 | 62, 63 | breqtrrid 4020 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺‘𝑖) = 0) → 0 ≤ (𝐺‘𝑖)) |
65 | | 0le1 8379 |
. . . . . . . . . . . . 13
⊢ 0 ≤
1 |
66 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺‘𝑖) = 1) → (𝐺‘𝑖) = 1) |
67 | 65, 66 | breqtrrid 4020 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺‘𝑖) = 1) → 0 ≤ (𝐺‘𝑖)) |
68 | | elpri 3599 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑖) ∈ {0, 1} → ((𝐺‘𝑖) = 0 ∨ (𝐺‘𝑖) = 1)) |
69 | 22, 68 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝐺‘𝑖) = 0 ∨ (𝐺‘𝑖) = 1)) |
70 | 64, 67, 69 | mpjaodan 788 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (𝐺‘𝑖)) |
71 | 15, 23, 61, 70 | mulge0d 8519 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ ((1 /
(2↑𝑖)) · (𝐺‘𝑖))) |
72 | 50, 71 | sylan2 284 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
73 | 48, 51, 72 | fsumge0 11400 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
74 | 55 | rpgt0d 9635 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < (1 / (2↑𝑥))) |
75 | | simprr 522 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝐺‘𝑥) = 1) |
76 | 75 | oveq2d 5858 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺‘𝑥)) = ((1 / (2↑𝑥)) · 1)) |
77 | 56 | recnd 7927 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1 / (2↑𝑥)) ∈
ℂ) |
78 | 77 | mulid1d 7916 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · 1) = (1 /
(2↑𝑥))) |
79 | 76, 78 | eqtrd 2198 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺‘𝑥)) = (1 / (2↑𝑥))) |
80 | 74, 79 | breqtrrd 4010 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < ((1 / (2↑𝑥)) · (𝐺‘𝑥))) |
81 | 52, 60, 73, 80 | addgegt0d 8417 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺‘𝑖)) + ((1 / (2↑𝑥)) · (𝐺‘𝑥)))) |
82 | | nfv 1516 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) |
83 | | nfcv 2308 |
. . . . . . . 8
⊢
Ⅎ𝑖((1 /
(2↑𝑥)) · (𝐺‘𝑥)) |
84 | | fzonel 10095 |
. . . . . . . . 9
⊢ ¬
𝑥 ∈ (1..^𝑥) |
85 | 84 | a1i 9 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ¬ 𝑥 ∈ (1..^𝑥)) |
86 | 50, 41 | sylan2 284 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℂ) |
87 | | oveq2 5850 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥)) |
88 | 87 | oveq2d 5858 |
. . . . . . . . 9
⊢ (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥))) |
89 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑖 = 𝑥 → (𝐺‘𝑖) = (𝐺‘𝑥)) |
90 | 88, 89 | oveq12d 5860 |
. . . . . . . 8
⊢ (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = ((1 / (2↑𝑥)) · (𝐺‘𝑥))) |
91 | 60 | recnd 7927 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺‘𝑥)) ∈ ℂ) |
92 | 82, 83, 48, 3, 85, 86, 90, 91 | fsumsplitsn 11351 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺‘𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺‘𝑖)) + ((1 / (2↑𝑥)) · (𝐺‘𝑥)))) |
93 | 81, 92 | breqtrrd 4010 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
94 | 3 | nncnd 8871 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝑥 ∈ ℂ) |
95 | | 1cnd 7915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 1 ∈
ℂ) |
96 | 94, 95 | pncand 8210 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((𝑥 + 1) − 1) = 𝑥) |
97 | 96 | oveq2d 5858 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = (1...𝑥)) |
98 | 3, 39 | eleqtrdi 2259 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝑥 ∈
(ℤ≥‘1)) |
99 | | fzisfzounsn 10171 |
. . . . . . . . 9
⊢ (𝑥 ∈
(ℤ≥‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥})) |
100 | 98, 99 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥})) |
101 | 97, 100 | eqtrd 2198 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥})) |
102 | 101 | sumeq1d 11307 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
103 | 93, 102 | breqtrrd 4010 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 /
(2↑𝑖)) · (𝐺‘𝑖))) |
104 | 34, 15 | syldan 280 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ) |
105 | 34, 23 | syldan 280 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → (𝐺‘𝑖) ∈ ℝ) |
106 | 34, 14 | syldan 280 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ+) |
107 | 106 | rpge0d 9636 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → 0 ≤ (1 /
(2↑𝑖))) |
108 | 34, 70 | syldan 280 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → 0 ≤ (𝐺‘𝑖)) |
109 | 104, 105,
107, 108 | mulge0d 8519 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → 0 ≤ ((1 /
(2↑𝑖)) · (𝐺‘𝑖))) |
110 | 27, 5, 36, 35, 44, 109 | isumge0 11371 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 ≤ Σ𝑖 ∈
(ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
111 | 26, 45, 103, 110 | addgtge0d 8418 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 /
(2↑𝑖)) · (𝐺‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)))) |
112 | 39, 27, 4, 40, 41, 38 | isumsplit 11432 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)))) |
113 | 111, 112 | breqtrrd 4010 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < Σ𝑖 ∈ ℕ ((1 /
(2↑𝑖)) · (𝐺‘𝑖))) |
114 | | nconstwlpolem0.a |
. . 3
⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) |
115 | 113, 114 | breqtrrdi 4024 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < 𝐴) |
116 | 1, 115 | rexlimddv 2588 |
1
⊢ (𝜑 → 0 < 𝐴) |