| Step | Hyp | Ref
| Expression |
| 1 | | nconstwlpolemgt0.0 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐺‘𝑥) = 1) |
| 2 | | 1zzd 9353 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 1 ∈
ℤ) |
| 3 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝑥 ∈ ℕ) |
| 4 | 3 | peano2nnd 9005 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝑥 + 1) ∈ ℕ) |
| 5 | 4 | nnzd 9447 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝑥 + 1) ∈ ℤ) |
| 6 | 5, 2 | zsubcld 9453 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((𝑥 + 1) − 1) ∈
ℤ) |
| 7 | 2, 6 | fzfigd 10523 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1...((𝑥 + 1) − 1)) ∈
Fin) |
| 8 | | elfznn 10129 |
. . . . . . 7
⊢ (𝑖 ∈ (1...((𝑥 + 1) − 1)) → 𝑖 ∈
ℕ) |
| 9 | | 2rp 9733 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ+ |
| 10 | 9 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 2 ∈
ℝ+) |
| 11 | | simpr 110 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
| 12 | 11 | nnzd 9447 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
| 13 | 10, 12 | rpexpcld 10789 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈
ℝ+) |
| 14 | 13 | rpreccld 9782 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ+) |
| 15 | 14 | rpred 9771 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ) |
| 16 | | 0re 8026 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 17 | | 1re 8025 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
| 18 | | prssi 3780 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆
ℝ) |
| 19 | 16, 17, 18 | mp2an 426 |
. . . . . . . . 9
⊢ {0, 1}
⊆ ℝ |
| 20 | | nconstwlpolem0.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) |
| 21 | 20 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝐺:ℕ⟶{0, 1}) |
| 22 | 21, 11 | ffvelcdmd 5698 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺‘𝑖) ∈ {0, 1}) |
| 23 | 19, 22 | sselid 3181 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺‘𝑖) ∈ ℝ) |
| 24 | 15, 23 | remulcld 8057 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
| 25 | 8, 24 | sylan2 286 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (1...((𝑥 + 1) − 1))) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
| 26 | 7, 25 | fsumrecl 11566 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
| 27 | | eqid 2196 |
. . . . . 6
⊢
(ℤ≥‘(𝑥 + 1)) = (ℤ≥‘(𝑥 + 1)) |
| 28 | | eqid 2196 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐺‘𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛))) |
| 29 | | oveq2 5930 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖)) |
| 30 | 29 | oveq2d 5938 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖))) |
| 31 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → (𝐺‘𝑛) = (𝐺‘𝑖)) |
| 32 | 30, 31 | oveq12d 5940 |
. . . . . . 7
⊢ (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐺‘𝑛)) = ((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
| 33 | | eluznn 9674 |
. . . . . . . 8
⊢ (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘(𝑥 + 1))) → 𝑖 ∈ ℕ) |
| 34 | 4, 33 | sylan 283 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → 𝑖 ∈
ℕ) |
| 35 | 34, 24 | syldan 282 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → ((1 /
(2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
| 36 | 28, 32, 34, 35 | fvmptd3 5655 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐺‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
| 37 | 20, 28 | trilpolemclim 15680 |
. . . . . . . 8
⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ ) |
| 38 | 37 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ ) |
| 39 | | nnuz 9637 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 40 | 28, 32, 11, 24 | fvmptd3 5655 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
| 41 | 24 | recnd 8055 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℂ) |
| 42 | 40, 41 | eqeltrd 2273 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))‘𝑖) ∈ ℂ) |
| 43 | 39, 4, 42 | iserex 11504 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ )) |
| 44 | 38, 43 | mpbid 147 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺‘𝑛)))) ∈ dom ⇝ ) |
| 45 | 27, 5, 36, 35, 44 | isumrecl 11594 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
| 46 | 3 | nnzd 9447 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝑥 ∈ ℤ) |
| 47 | | fzofig 10524 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ 𝑥
∈ ℤ) → (1..^𝑥) ∈ Fin) |
| 48 | 2, 46, 47 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1..^𝑥) ∈ Fin) |
| 49 | | elfzo1 10266 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1..^𝑥) ↔ (𝑖 ∈ ℕ ∧ 𝑥 ∈ ℕ ∧ 𝑖 < 𝑥)) |
| 50 | 49 | simp1bi 1014 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ) |
| 51 | 50, 24 | sylan2 286 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
| 52 | 48, 51 | fsumrecl 11566 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℝ) |
| 53 | 9 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 2 ∈
ℝ+) |
| 54 | 53, 46 | rpexpcld 10789 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (2↑𝑥) ∈
ℝ+) |
| 55 | 54 | rpreccld 9782 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1 / (2↑𝑥)) ∈
ℝ+) |
| 56 | 55 | rpred 9771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1 / (2↑𝑥)) ∈
ℝ) |
| 57 | 20 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝐺:ℕ⟶{0, 1}) |
| 58 | 57, 3 | ffvelcdmd 5698 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝐺‘𝑥) ∈ {0, 1}) |
| 59 | 19, 58 | sselid 3181 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝐺‘𝑥) ∈ ℝ) |
| 60 | 56, 59 | remulcld 8057 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺‘𝑥)) ∈ ℝ) |
| 61 | 14 | rpge0d 9775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (1 /
(2↑𝑖))) |
| 62 | | 0le0 9079 |
. . . . . . . . . . . . 13
⊢ 0 ≤
0 |
| 63 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺‘𝑖) = 0) → (𝐺‘𝑖) = 0) |
| 64 | 62, 63 | breqtrrid 4071 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺‘𝑖) = 0) → 0 ≤ (𝐺‘𝑖)) |
| 65 | | 0le1 8508 |
. . . . . . . . . . . . 13
⊢ 0 ≤
1 |
| 66 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺‘𝑖) = 1) → (𝐺‘𝑖) = 1) |
| 67 | 65, 66 | breqtrrid 4071 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺‘𝑖) = 1) → 0 ≤ (𝐺‘𝑖)) |
| 68 | | elpri 3645 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑖) ∈ {0, 1} → ((𝐺‘𝑖) = 0 ∨ (𝐺‘𝑖) = 1)) |
| 69 | 22, 68 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝐺‘𝑖) = 0 ∨ (𝐺‘𝑖) = 1)) |
| 70 | 64, 67, 69 | mpjaodan 799 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (𝐺‘𝑖)) |
| 71 | 15, 23, 61, 70 | mulge0d 8648 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ ((1 /
(2↑𝑖)) · (𝐺‘𝑖))) |
| 72 | 50, 71 | sylan2 286 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
| 73 | 48, 51, 72 | fsumge0 11624 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
| 74 | 55 | rpgt0d 9774 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < (1 / (2↑𝑥))) |
| 75 | | simprr 531 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (𝐺‘𝑥) = 1) |
| 76 | 75 | oveq2d 5938 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺‘𝑥)) = ((1 / (2↑𝑥)) · 1)) |
| 77 | 56 | recnd 8055 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1 / (2↑𝑥)) ∈
ℂ) |
| 78 | 77 | mulridd 8043 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · 1) = (1 /
(2↑𝑥))) |
| 79 | 76, 78 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺‘𝑥)) = (1 / (2↑𝑥))) |
| 80 | 74, 79 | breqtrrd 4061 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < ((1 / (2↑𝑥)) · (𝐺‘𝑥))) |
| 81 | 52, 60, 73, 80 | addgegt0d 8546 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺‘𝑖)) + ((1 / (2↑𝑥)) · (𝐺‘𝑥)))) |
| 82 | | nfv 1542 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) |
| 83 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑖((1 /
(2↑𝑥)) · (𝐺‘𝑥)) |
| 84 | | fzonel 10236 |
. . . . . . . . 9
⊢ ¬
𝑥 ∈ (1..^𝑥) |
| 85 | 84 | a1i 9 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ¬ 𝑥 ∈ (1..^𝑥)) |
| 86 | 50, 41 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ∈ ℂ) |
| 87 | | oveq2 5930 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥)) |
| 88 | 87 | oveq2d 5938 |
. . . . . . . . 9
⊢ (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥))) |
| 89 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑖 = 𝑥 → (𝐺‘𝑖) = (𝐺‘𝑥)) |
| 90 | 88, 89 | oveq12d 5940 |
. . . . . . . 8
⊢ (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = ((1 / (2↑𝑥)) · (𝐺‘𝑥))) |
| 91 | 60 | recnd 8055 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺‘𝑥)) ∈ ℂ) |
| 92 | 82, 83, 48, 3, 85, 86, 90, 91 | fsumsplitsn 11575 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺‘𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺‘𝑖)) + ((1 / (2↑𝑥)) · (𝐺‘𝑥)))) |
| 93 | 81, 92 | breqtrrd 4061 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
| 94 | 3 | nncnd 9004 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝑥 ∈ ℂ) |
| 95 | | 1cnd 8042 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 1 ∈
ℂ) |
| 96 | 94, 95 | pncand 8338 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → ((𝑥 + 1) − 1) = 𝑥) |
| 97 | 96 | oveq2d 5938 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = (1...𝑥)) |
| 98 | 3, 39 | eleqtrdi 2289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 𝑥 ∈
(ℤ≥‘1)) |
| 99 | | fzisfzounsn 10312 |
. . . . . . . . 9
⊢ (𝑥 ∈
(ℤ≥‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥})) |
| 100 | 98, 99 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥})) |
| 101 | 97, 100 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥})) |
| 102 | 101 | sumeq1d 11531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
| 103 | 93, 102 | breqtrrd 4061 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 /
(2↑𝑖)) · (𝐺‘𝑖))) |
| 104 | 34, 15 | syldan 282 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ) |
| 105 | 34, 23 | syldan 282 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → (𝐺‘𝑖) ∈ ℝ) |
| 106 | 34, 14 | syldan 282 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ+) |
| 107 | 106 | rpge0d 9775 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → 0 ≤ (1 /
(2↑𝑖))) |
| 108 | 34, 70 | syldan 282 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → 0 ≤ (𝐺‘𝑖)) |
| 109 | 104, 105,
107, 108 | mulge0d 8648 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → 0 ≤ ((1 /
(2↑𝑖)) · (𝐺‘𝑖))) |
| 110 | 27, 5, 36, 35, 44, 109 | isumge0 11595 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 ≤ Σ𝑖 ∈
(ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺‘𝑖))) |
| 111 | 26, 45, 103, 110 | addgtge0d 8547 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 /
(2↑𝑖)) · (𝐺‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)))) |
| 112 | 39, 27, 4, 40, 41, 38 | isumsplit 11656 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺‘𝑖)))) |
| 113 | 111, 112 | breqtrrd 4061 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < Σ𝑖 ∈ ℕ ((1 /
(2↑𝑖)) · (𝐺‘𝑖))) |
| 114 | | nconstwlpolem0.a |
. . 3
⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) |
| 115 | 113, 114 | breqtrrdi 4075 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) = 1)) → 0 < 𝐴) |
| 116 | 1, 115 | rexlimddv 2619 |
1
⊢ (𝜑 → 0 < 𝐴) |