Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolemgt0 GIF version

Theorem nconstwlpolemgt0 14095
Description: Lemma for nconstwlpo 14097. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpolem0.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpolem0.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
nconstwlpolemgt0.0 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
Assertion
Ref Expression
nconstwlpolemgt0 (𝜑 → 0 < 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑖,𝐺   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝐺(𝑥)

Proof of Theorem nconstwlpolemgt0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nconstwlpolemgt0.0 . 2 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
2 1zzd 9239 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℤ)
3 simprl 526 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℕ)
43peano2nnd 8893 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℕ)
54nnzd 9333 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℤ)
65, 2zsubcld 9339 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) ∈ ℤ)
72, 6fzfigd 10387 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) ∈ Fin)
8 elfznn 10010 . . . . . . 7 (𝑖 ∈ (1...((𝑥 + 1) − 1)) → 𝑖 ∈ ℕ)
9 2rp 9615 . . . . . . . . . . . 12 2 ∈ ℝ+
109a1i 9 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
11 simpr 109 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
1211nnzd 9333 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1310, 12rpexpcld 10633 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1413rpreccld 9664 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1514rpred 9653 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
16 0re 7920 . . . . . . . . . 10 0 ∈ ℝ
17 1re 7919 . . . . . . . . . 10 1 ∈ ℝ
18 prssi 3738 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
1916, 17, 18mp2an 424 . . . . . . . . 9 {0, 1} ⊆ ℝ
20 nconstwlpolem0.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶{0, 1})
2120ad2antrr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝐺:ℕ⟶{0, 1})
2221, 11ffvelrnd 5632 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ {0, 1})
2319, 22sselid 3145 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
2415, 23remulcld 7950 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
258, 24sylan2 284 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1...((𝑥 + 1) − 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
267, 25fsumrecl 11364 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
27 eqid 2170 . . . . . 6 (ℤ‘(𝑥 + 1)) = (ℤ‘(𝑥 + 1))
28 eqid 2170 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))
29 oveq2 5861 . . . . . . . . 9 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
3029oveq2d 5869 . . . . . . . 8 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
31 fveq2 5496 . . . . . . . 8 (𝑛 = 𝑖 → (𝐺𝑛) = (𝐺𝑖))
3230, 31oveq12d 5871 . . . . . . 7 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐺𝑛)) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
33 eluznn 9559 . . . . . . . 8 (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
344, 33sylan 281 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
3534, 24syldan 280 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
3628, 32, 34, 35fvmptd3 5589 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
3720, 28trilpolemclim 14068 . . . . . . . 8 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
3837adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
39 nnuz 9522 . . . . . . . 8 ℕ = (ℤ‘1)
4028, 32, 11, 24fvmptd3 5589 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
4124recnd 7948 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
4240, 41eqeltrd 2247 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) ∈ ℂ)
4339, 4, 42iserex 11302 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ))
4438, 43mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
4527, 5, 36, 35, 44isumrecl 11392 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
463nnzd 9333 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℤ)
47 fzofig 10388 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (1..^𝑥) ∈ Fin)
482, 46, 47syl2anc 409 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1..^𝑥) ∈ Fin)
49 elfzo1 10146 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑥) ↔ (𝑖 ∈ ℕ ∧ 𝑥 ∈ ℕ ∧ 𝑖 < 𝑥))
5049simp1bi 1007 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ)
5150, 24sylan2 284 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
5248, 51fsumrecl 11364 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
539a1i 9 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 2 ∈ ℝ+)
5453, 46rpexpcld 10633 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (2↑𝑥) ∈ ℝ+)
5554rpreccld 9664 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ+)
5655rpred 9653 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ)
5720adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝐺:ℕ⟶{0, 1})
5857, 3ffvelrnd 5632 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ {0, 1})
5919, 58sselid 3145 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ ℝ)
6056, 59remulcld 7950 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℝ)
6114rpge0d 9657 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (1 / (2↑𝑖)))
62 0le0 8967 . . . . . . . . . . . . 13 0 ≤ 0
63 simpr 109 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → (𝐺𝑖) = 0)
6462, 63breqtrrid 4027 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → 0 ≤ (𝐺𝑖))
65 0le1 8400 . . . . . . . . . . . . 13 0 ≤ 1
66 simpr 109 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → (𝐺𝑖) = 1)
6765, 66breqtrrid 4027 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → 0 ≤ (𝐺𝑖))
68 elpri 3606 . . . . . . . . . . . . 13 ((𝐺𝑖) ∈ {0, 1} → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
6922, 68syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
7064, 67, 69mpjaodan 793 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (𝐺𝑖))
7115, 23, 61, 70mulge0d 8540 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7250, 71sylan2 284 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7348, 51, 72fsumge0 11422 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)))
7455rpgt0d 9656 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (1 / (2↑𝑥)))
75 simprr 527 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) = 1)
7675oveq2d 5869 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = ((1 / (2↑𝑥)) · 1))
7756recnd 7948 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℂ)
7877mulid1d 7937 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · 1) = (1 / (2↑𝑥)))
7976, 78eqtrd 2203 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = (1 / (2↑𝑥)))
8074, 79breqtrrd 4017 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < ((1 / (2↑𝑥)) · (𝐺𝑥)))
8152, 60, 73, 80addgegt0d 8438 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
82 nfv 1521 . . . . . . . 8 𝑖(𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1))
83 nfcv 2312 . . . . . . . 8 𝑖((1 / (2↑𝑥)) · (𝐺𝑥))
84 fzonel 10116 . . . . . . . . 9 ¬ 𝑥 ∈ (1..^𝑥)
8584a1i 9 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ¬ 𝑥 ∈ (1..^𝑥))
8650, 41sylan2 284 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
87 oveq2 5861 . . . . . . . . . 10 (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥))
8887oveq2d 5869 . . . . . . . . 9 (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥)))
89 fveq2 5496 . . . . . . . . 9 (𝑖 = 𝑥 → (𝐺𝑖) = (𝐺𝑥))
9088, 89oveq12d 5871 . . . . . . . 8 (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐺𝑖)) = ((1 / (2↑𝑥)) · (𝐺𝑥)))
9160recnd 7948 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℂ)
9282, 83, 48, 3, 85, 86, 90, 91fsumsplitsn 11373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
9381, 92breqtrrd 4017 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
943nncnd 8892 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℂ)
95 1cnd 7936 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℂ)
9694, 95pncand 8231 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) = 𝑥)
9796oveq2d 5869 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = (1...𝑥))
983, 39eleqtrdi 2263 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ (ℤ‘1))
99 fzisfzounsn 10192 . . . . . . . . 9 (𝑥 ∈ (ℤ‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10098, 99syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10197, 100eqtrd 2203 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥}))
102101sumeq1d 11329 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
10393, 102breqtrrd 4017 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
10434, 15syldan 280 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
10534, 23syldan 280 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (𝐺𝑖) ∈ ℝ)
10634, 14syldan 280 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
107106rpge0d 9657 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (1 / (2↑𝑖)))
10834, 70syldan 280 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (𝐺𝑖))
109104, 105, 107, 108mulge0d 8540 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
11027, 5, 36, 35, 44, 109isumge0 11393 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
11126, 45, 103, 110addgtge0d 8439 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
11239, 27, 4, 40, 41, 38isumsplit 11454 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
113111, 112breqtrrd 4017 . . 3 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)))
114 nconstwlpolem0.a . . 3 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
115113, 114breqtrrdi 4031 . 2 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < 𝐴)
1161, 115rexlimddv 2592 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141  wrex 2449  cun 3119  wss 3121  {csn 3583  {cpr 3584   class class class wbr 3989  cmpt 4050  dom cdm 4611  wf 5194  cfv 5198  (class class class)co 5853  Fincfn 6718  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090   / cdiv 8589  cn 8878  2c2 8929  cz 9212  cuz 9487  +crp 9610  ...cfz 9965  ..^cfzo 10098  seqcseq 10401  cexp 10475  cli 11241  Σcsu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  nconstwlpolem  14096
  Copyright terms: Public domain W3C validator