Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolemgt0 GIF version

Theorem nconstwlpolemgt0 15795
Description: Lemma for nconstwlpo 15797. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpolem0.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpolem0.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
nconstwlpolemgt0.0 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
Assertion
Ref Expression
nconstwlpolemgt0 (𝜑 → 0 < 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑖,𝐺   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝐺(𝑥)

Proof of Theorem nconstwlpolemgt0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nconstwlpolemgt0.0 . 2 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
2 1zzd 9370 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℤ)
3 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℕ)
43peano2nnd 9022 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℕ)
54nnzd 9464 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℤ)
65, 2zsubcld 9470 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) ∈ ℤ)
72, 6fzfigd 10540 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) ∈ Fin)
8 elfznn 10146 . . . . . . 7 (𝑖 ∈ (1...((𝑥 + 1) − 1)) → 𝑖 ∈ ℕ)
9 2rp 9750 . . . . . . . . . . . 12 2 ∈ ℝ+
109a1i 9 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
11 simpr 110 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
1211nnzd 9464 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1310, 12rpexpcld 10806 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1413rpreccld 9799 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1514rpred 9788 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
16 0re 8043 . . . . . . . . . 10 0 ∈ ℝ
17 1re 8042 . . . . . . . . . 10 1 ∈ ℝ
18 prssi 3781 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
1916, 17, 18mp2an 426 . . . . . . . . 9 {0, 1} ⊆ ℝ
20 nconstwlpolem0.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶{0, 1})
2120ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝐺:ℕ⟶{0, 1})
2221, 11ffvelcdmd 5701 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ {0, 1})
2319, 22sselid 3182 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
2415, 23remulcld 8074 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
258, 24sylan2 286 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1...((𝑥 + 1) − 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
267, 25fsumrecl 11583 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
27 eqid 2196 . . . . . 6 (ℤ‘(𝑥 + 1)) = (ℤ‘(𝑥 + 1))
28 eqid 2196 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))
29 oveq2 5933 . . . . . . . . 9 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
3029oveq2d 5941 . . . . . . . 8 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
31 fveq2 5561 . . . . . . . 8 (𝑛 = 𝑖 → (𝐺𝑛) = (𝐺𝑖))
3230, 31oveq12d 5943 . . . . . . 7 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐺𝑛)) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
33 eluznn 9691 . . . . . . . 8 (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
344, 33sylan 283 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
3534, 24syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
3628, 32, 34, 35fvmptd3 5658 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
3720, 28trilpolemclim 15767 . . . . . . . 8 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
3837adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
39 nnuz 9654 . . . . . . . 8 ℕ = (ℤ‘1)
4028, 32, 11, 24fvmptd3 5658 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
4124recnd 8072 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
4240, 41eqeltrd 2273 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) ∈ ℂ)
4339, 4, 42iserex 11521 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ))
4438, 43mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
4527, 5, 36, 35, 44isumrecl 11611 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
463nnzd 9464 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℤ)
47 fzofig 10541 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (1..^𝑥) ∈ Fin)
482, 46, 47syl2anc 411 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1..^𝑥) ∈ Fin)
49 elfzo1 10283 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑥) ↔ (𝑖 ∈ ℕ ∧ 𝑥 ∈ ℕ ∧ 𝑖 < 𝑥))
5049simp1bi 1014 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ)
5150, 24sylan2 286 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
5248, 51fsumrecl 11583 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
539a1i 9 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 2 ∈ ℝ+)
5453, 46rpexpcld 10806 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (2↑𝑥) ∈ ℝ+)
5554rpreccld 9799 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ+)
5655rpred 9788 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ)
5720adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝐺:ℕ⟶{0, 1})
5857, 3ffvelcdmd 5701 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ {0, 1})
5919, 58sselid 3182 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ ℝ)
6056, 59remulcld 8074 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℝ)
6114rpge0d 9792 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (1 / (2↑𝑖)))
62 0le0 9096 . . . . . . . . . . . . 13 0 ≤ 0
63 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → (𝐺𝑖) = 0)
6462, 63breqtrrid 4072 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → 0 ≤ (𝐺𝑖))
65 0le1 8525 . . . . . . . . . . . . 13 0 ≤ 1
66 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → (𝐺𝑖) = 1)
6765, 66breqtrrid 4072 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → 0 ≤ (𝐺𝑖))
68 elpri 3646 . . . . . . . . . . . . 13 ((𝐺𝑖) ∈ {0, 1} → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
6922, 68syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
7064, 67, 69mpjaodan 799 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (𝐺𝑖))
7115, 23, 61, 70mulge0d 8665 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7250, 71sylan2 286 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7348, 51, 72fsumge0 11641 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)))
7455rpgt0d 9791 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (1 / (2↑𝑥)))
75 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) = 1)
7675oveq2d 5941 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = ((1 / (2↑𝑥)) · 1))
7756recnd 8072 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℂ)
7877mulridd 8060 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · 1) = (1 / (2↑𝑥)))
7976, 78eqtrd 2229 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = (1 / (2↑𝑥)))
8074, 79breqtrrd 4062 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < ((1 / (2↑𝑥)) · (𝐺𝑥)))
8152, 60, 73, 80addgegt0d 8563 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
82 nfv 1542 . . . . . . . 8 𝑖(𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1))
83 nfcv 2339 . . . . . . . 8 𝑖((1 / (2↑𝑥)) · (𝐺𝑥))
84 fzonel 10253 . . . . . . . . 9 ¬ 𝑥 ∈ (1..^𝑥)
8584a1i 9 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ¬ 𝑥 ∈ (1..^𝑥))
8650, 41sylan2 286 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
87 oveq2 5933 . . . . . . . . . 10 (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥))
8887oveq2d 5941 . . . . . . . . 9 (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥)))
89 fveq2 5561 . . . . . . . . 9 (𝑖 = 𝑥 → (𝐺𝑖) = (𝐺𝑥))
9088, 89oveq12d 5943 . . . . . . . 8 (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐺𝑖)) = ((1 / (2↑𝑥)) · (𝐺𝑥)))
9160recnd 8072 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℂ)
9282, 83, 48, 3, 85, 86, 90, 91fsumsplitsn 11592 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
9381, 92breqtrrd 4062 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
943nncnd 9021 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℂ)
95 1cnd 8059 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℂ)
9694, 95pncand 8355 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) = 𝑥)
9796oveq2d 5941 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = (1...𝑥))
983, 39eleqtrdi 2289 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ (ℤ‘1))
99 fzisfzounsn 10329 . . . . . . . . 9 (𝑥 ∈ (ℤ‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10098, 99syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10197, 100eqtrd 2229 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥}))
102101sumeq1d 11548 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
10393, 102breqtrrd 4062 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
10434, 15syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
10534, 23syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (𝐺𝑖) ∈ ℝ)
10634, 14syldan 282 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
107106rpge0d 9792 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (1 / (2↑𝑖)))
10834, 70syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (𝐺𝑖))
109104, 105, 107, 108mulge0d 8665 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
11027, 5, 36, 35, 44, 109isumge0 11612 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
11126, 45, 103, 110addgtge0d 8564 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
11239, 27, 4, 40, 41, 38isumsplit 11673 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
113111, 112breqtrrd 4062 . . 3 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)))
114 nconstwlpolem0.a . . 3 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
115113, 114breqtrrdi 4076 . 2 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < 𝐴)
1161, 115rexlimddv 2619 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  wrex 2476  cun 3155  wss 3157  {csn 3623  {cpr 3624   class class class wbr 4034  cmpt 4095  dom cdm 4664  wf 5255  cfv 5259  (class class class)co 5925  Fincfn 6808  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214   / cdiv 8716  cn 9007  2c2 9058  cz 9343  cuz 9618  +crp 9745  ...cfz 10100  ..^cfzo 10234  seqcseq 10556  cexp 10647  cli 11460  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  nconstwlpolem  15796
  Copyright terms: Public domain W3C validator