Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolemgt0 GIF version

Theorem nconstwlpolemgt0 15708
Description: Lemma for nconstwlpo 15710. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpolem0.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpolem0.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
nconstwlpolemgt0.0 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
Assertion
Ref Expression
nconstwlpolemgt0 (𝜑 → 0 < 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑖,𝐺   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝐺(𝑥)

Proof of Theorem nconstwlpolemgt0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nconstwlpolemgt0.0 . 2 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
2 1zzd 9353 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℤ)
3 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℕ)
43peano2nnd 9005 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℕ)
54nnzd 9447 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℤ)
65, 2zsubcld 9453 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) ∈ ℤ)
72, 6fzfigd 10523 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) ∈ Fin)
8 elfznn 10129 . . . . . . 7 (𝑖 ∈ (1...((𝑥 + 1) − 1)) → 𝑖 ∈ ℕ)
9 2rp 9733 . . . . . . . . . . . 12 2 ∈ ℝ+
109a1i 9 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
11 simpr 110 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
1211nnzd 9447 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1310, 12rpexpcld 10789 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1413rpreccld 9782 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1514rpred 9771 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
16 0re 8026 . . . . . . . . . 10 0 ∈ ℝ
17 1re 8025 . . . . . . . . . 10 1 ∈ ℝ
18 prssi 3780 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
1916, 17, 18mp2an 426 . . . . . . . . 9 {0, 1} ⊆ ℝ
20 nconstwlpolem0.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶{0, 1})
2120ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝐺:ℕ⟶{0, 1})
2221, 11ffvelcdmd 5698 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ {0, 1})
2319, 22sselid 3181 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
2415, 23remulcld 8057 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
258, 24sylan2 286 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1...((𝑥 + 1) − 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
267, 25fsumrecl 11566 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
27 eqid 2196 . . . . . 6 (ℤ‘(𝑥 + 1)) = (ℤ‘(𝑥 + 1))
28 eqid 2196 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))
29 oveq2 5930 . . . . . . . . 9 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
3029oveq2d 5938 . . . . . . . 8 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
31 fveq2 5558 . . . . . . . 8 (𝑛 = 𝑖 → (𝐺𝑛) = (𝐺𝑖))
3230, 31oveq12d 5940 . . . . . . 7 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐺𝑛)) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
33 eluznn 9674 . . . . . . . 8 (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
344, 33sylan 283 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
3534, 24syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
3628, 32, 34, 35fvmptd3 5655 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
3720, 28trilpolemclim 15680 . . . . . . . 8 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
3837adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
39 nnuz 9637 . . . . . . . 8 ℕ = (ℤ‘1)
4028, 32, 11, 24fvmptd3 5655 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
4124recnd 8055 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
4240, 41eqeltrd 2273 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) ∈ ℂ)
4339, 4, 42iserex 11504 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ))
4438, 43mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
4527, 5, 36, 35, 44isumrecl 11594 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
463nnzd 9447 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℤ)
47 fzofig 10524 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (1..^𝑥) ∈ Fin)
482, 46, 47syl2anc 411 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1..^𝑥) ∈ Fin)
49 elfzo1 10266 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑥) ↔ (𝑖 ∈ ℕ ∧ 𝑥 ∈ ℕ ∧ 𝑖 < 𝑥))
5049simp1bi 1014 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ)
5150, 24sylan2 286 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
5248, 51fsumrecl 11566 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
539a1i 9 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 2 ∈ ℝ+)
5453, 46rpexpcld 10789 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (2↑𝑥) ∈ ℝ+)
5554rpreccld 9782 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ+)
5655rpred 9771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ)
5720adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝐺:ℕ⟶{0, 1})
5857, 3ffvelcdmd 5698 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ {0, 1})
5919, 58sselid 3181 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ ℝ)
6056, 59remulcld 8057 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℝ)
6114rpge0d 9775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (1 / (2↑𝑖)))
62 0le0 9079 . . . . . . . . . . . . 13 0 ≤ 0
63 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → (𝐺𝑖) = 0)
6462, 63breqtrrid 4071 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → 0 ≤ (𝐺𝑖))
65 0le1 8508 . . . . . . . . . . . . 13 0 ≤ 1
66 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → (𝐺𝑖) = 1)
6765, 66breqtrrid 4071 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → 0 ≤ (𝐺𝑖))
68 elpri 3645 . . . . . . . . . . . . 13 ((𝐺𝑖) ∈ {0, 1} → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
6922, 68syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
7064, 67, 69mpjaodan 799 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (𝐺𝑖))
7115, 23, 61, 70mulge0d 8648 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7250, 71sylan2 286 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7348, 51, 72fsumge0 11624 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)))
7455rpgt0d 9774 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (1 / (2↑𝑥)))
75 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) = 1)
7675oveq2d 5938 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = ((1 / (2↑𝑥)) · 1))
7756recnd 8055 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℂ)
7877mulridd 8043 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · 1) = (1 / (2↑𝑥)))
7976, 78eqtrd 2229 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = (1 / (2↑𝑥)))
8074, 79breqtrrd 4061 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < ((1 / (2↑𝑥)) · (𝐺𝑥)))
8152, 60, 73, 80addgegt0d 8546 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
82 nfv 1542 . . . . . . . 8 𝑖(𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1))
83 nfcv 2339 . . . . . . . 8 𝑖((1 / (2↑𝑥)) · (𝐺𝑥))
84 fzonel 10236 . . . . . . . . 9 ¬ 𝑥 ∈ (1..^𝑥)
8584a1i 9 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ¬ 𝑥 ∈ (1..^𝑥))
8650, 41sylan2 286 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
87 oveq2 5930 . . . . . . . . . 10 (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥))
8887oveq2d 5938 . . . . . . . . 9 (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥)))
89 fveq2 5558 . . . . . . . . 9 (𝑖 = 𝑥 → (𝐺𝑖) = (𝐺𝑥))
9088, 89oveq12d 5940 . . . . . . . 8 (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐺𝑖)) = ((1 / (2↑𝑥)) · (𝐺𝑥)))
9160recnd 8055 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℂ)
9282, 83, 48, 3, 85, 86, 90, 91fsumsplitsn 11575 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
9381, 92breqtrrd 4061 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
943nncnd 9004 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℂ)
95 1cnd 8042 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℂ)
9694, 95pncand 8338 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) = 𝑥)
9796oveq2d 5938 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = (1...𝑥))
983, 39eleqtrdi 2289 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ (ℤ‘1))
99 fzisfzounsn 10312 . . . . . . . . 9 (𝑥 ∈ (ℤ‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10098, 99syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10197, 100eqtrd 2229 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥}))
102101sumeq1d 11531 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
10393, 102breqtrrd 4061 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
10434, 15syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
10534, 23syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (𝐺𝑖) ∈ ℝ)
10634, 14syldan 282 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
107106rpge0d 9775 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (1 / (2↑𝑖)))
10834, 70syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (𝐺𝑖))
109104, 105, 107, 108mulge0d 8648 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
11027, 5, 36, 35, 44, 109isumge0 11595 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
11126, 45, 103, 110addgtge0d 8547 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
11239, 27, 4, 40, 41, 38isumsplit 11656 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
113111, 112breqtrrd 4061 . . 3 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)))
114 nconstwlpolem0.a . . 3 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
115113, 114breqtrrdi 4075 . 2 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < 𝐴)
1161, 115rexlimddv 2619 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  wrex 2476  cun 3155  wss 3157  {csn 3622  {cpr 3623   class class class wbr 4033  cmpt 4094  dom cdm 4663  wf 5254  cfv 5258  (class class class)co 5922  Fincfn 6799  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197   / cdiv 8699  cn 8990  2c2 9041  cz 9326  cuz 9601  +crp 9728  ...cfz 10083  ..^cfzo 10217  seqcseq 10539  cexp 10630  cli 11443  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  nconstwlpolem  15709
  Copyright terms: Public domain W3C validator