Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolemgt0 GIF version

Theorem nconstwlpolemgt0 13942
Description: Lemma for nconstwlpo 13944. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpolem0.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpolem0.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
nconstwlpolemgt0.0 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
Assertion
Ref Expression
nconstwlpolemgt0 (𝜑 → 0 < 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑖,𝐺   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝐺(𝑥)

Proof of Theorem nconstwlpolemgt0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nconstwlpolemgt0.0 . 2 (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)
2 1zzd 9218 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℤ)
3 simprl 521 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℕ)
43peano2nnd 8872 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℕ)
54nnzd 9312 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝑥 + 1) ∈ ℤ)
65, 2zsubcld 9318 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) ∈ ℤ)
72, 6fzfigd 10366 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) ∈ Fin)
8 elfznn 9989 . . . . . . 7 (𝑖 ∈ (1...((𝑥 + 1) − 1)) → 𝑖 ∈ ℕ)
9 2rp 9594 . . . . . . . . . . . 12 2 ∈ ℝ+
109a1i 9 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
11 simpr 109 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
1211nnzd 9312 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1310, 12rpexpcld 10612 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1413rpreccld 9643 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1514rpred 9632 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
16 0re 7899 . . . . . . . . . 10 0 ∈ ℝ
17 1re 7898 . . . . . . . . . 10 1 ∈ ℝ
18 prssi 3731 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
1916, 17, 18mp2an 423 . . . . . . . . 9 {0, 1} ⊆ ℝ
20 nconstwlpolem0.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶{0, 1})
2120ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 𝐺:ℕ⟶{0, 1})
2221, 11ffvelrnd 5621 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ {0, 1})
2319, 22sselid 3140 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
2415, 23remulcld 7929 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
258, 24sylan2 284 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1...((𝑥 + 1) − 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
267, 25fsumrecl 11342 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
27 eqid 2165 . . . . . 6 (ℤ‘(𝑥 + 1)) = (ℤ‘(𝑥 + 1))
28 eqid 2165 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))
29 oveq2 5850 . . . . . . . . 9 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
3029oveq2d 5858 . . . . . . . 8 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
31 fveq2 5486 . . . . . . . 8 (𝑛 = 𝑖 → (𝐺𝑛) = (𝐺𝑖))
3230, 31oveq12d 5860 . . . . . . 7 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐺𝑛)) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
33 eluznn 9538 . . . . . . . 8 (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
344, 33sylan 281 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
3534, 24syldan 280 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
3628, 32, 34, 35fvmptd3 5579 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
3720, 28trilpolemclim 13915 . . . . . . . 8 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
3837adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
39 nnuz 9501 . . . . . . . 8 ℕ = (ℤ‘1)
4028, 32, 11, 24fvmptd3 5579 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐺𝑖)))
4124recnd 7927 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
4240, 41eqeltrd 2243 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))‘𝑖) ∈ ℂ)
4339, 4, 42iserex 11280 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ ))
4438, 43mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐺𝑛)))) ∈ dom ⇝ )
4527, 5, 36, 35, 44isumrecl 11370 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
463nnzd 9312 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℤ)
47 fzofig 10367 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (1..^𝑥) ∈ Fin)
482, 46, 47syl2anc 409 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1..^𝑥) ∈ Fin)
49 elfzo1 10125 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑥) ↔ (𝑖 ∈ ℕ ∧ 𝑥 ∈ ℕ ∧ 𝑖 < 𝑥))
5049simp1bi 1002 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ)
5150, 24sylan2 284 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
5248, 51fsumrecl 11342 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℝ)
539a1i 9 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 2 ∈ ℝ+)
5453, 46rpexpcld 10612 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (2↑𝑥) ∈ ℝ+)
5554rpreccld 9643 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ+)
5655rpred 9632 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℝ)
5720adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝐺:ℕ⟶{0, 1})
5857, 3ffvelrnd 5621 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ {0, 1})
5919, 58sselid 3140 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) ∈ ℝ)
6056, 59remulcld 7929 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℝ)
6114rpge0d 9636 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (1 / (2↑𝑖)))
62 0le0 8946 . . . . . . . . . . . . 13 0 ≤ 0
63 simpr 109 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → (𝐺𝑖) = 0)
6462, 63breqtrrid 4020 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 0) → 0 ≤ (𝐺𝑖))
65 0le1 8379 . . . . . . . . . . . . 13 0 ≤ 1
66 simpr 109 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → (𝐺𝑖) = 1)
6765, 66breqtrrid 4020 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) ∧ (𝐺𝑖) = 1) → 0 ≤ (𝐺𝑖))
68 elpri 3599 . . . . . . . . . . . . 13 ((𝐺𝑖) ∈ {0, 1} → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
6922, 68syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → ((𝐺𝑖) = 0 ∨ (𝐺𝑖) = 1))
7064, 67, 69mpjaodan 788 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ (𝐺𝑖))
7115, 23, 61, 70mulge0d 8519 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ ℕ) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7250, 71sylan2 284 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
7348, 51, 72fsumge0 11400 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)))
7455rpgt0d 9635 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (1 / (2↑𝑥)))
75 simprr 522 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (𝐺𝑥) = 1)
7675oveq2d 5858 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = ((1 / (2↑𝑥)) · 1))
7756recnd 7927 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1 / (2↑𝑥)) ∈ ℂ)
7877mulid1d 7916 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · 1) = (1 / (2↑𝑥)))
7976, 78eqtrd 2198 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) = (1 / (2↑𝑥)))
8074, 79breqtrrd 4010 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < ((1 / (2↑𝑥)) · (𝐺𝑥)))
8152, 60, 73, 80addgegt0d 8417 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
82 nfv 1516 . . . . . . . 8 𝑖(𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1))
83 nfcv 2308 . . . . . . . 8 𝑖((1 / (2↑𝑥)) · (𝐺𝑥))
84 fzonel 10095 . . . . . . . . 9 ¬ 𝑥 ∈ (1..^𝑥)
8584a1i 9 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ¬ 𝑥 ∈ (1..^𝑥))
8650, 41sylan2 284 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐺𝑖)) ∈ ℂ)
87 oveq2 5850 . . . . . . . . . 10 (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥))
8887oveq2d 5858 . . . . . . . . 9 (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥)))
89 fveq2 5486 . . . . . . . . 9 (𝑖 = 𝑥 → (𝐺𝑖) = (𝐺𝑥))
9088, 89oveq12d 5860 . . . . . . . 8 (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐺𝑖)) = ((1 / (2↑𝑥)) · (𝐺𝑥)))
9160recnd 7927 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((1 / (2↑𝑥)) · (𝐺𝑥)) ∈ ℂ)
9282, 83, 48, 3, 85, 86, 90, 91fsumsplitsn 11351 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐺𝑖)) + ((1 / (2↑𝑥)) · (𝐺𝑥))))
9381, 92breqtrrd 4010 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
943nncnd 8871 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ ℂ)
95 1cnd 7915 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 1 ∈ ℂ)
9694, 95pncand 8210 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → ((𝑥 + 1) − 1) = 𝑥)
9796oveq2d 5858 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = (1...𝑥))
983, 39eleqtrdi 2259 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 𝑥 ∈ (ℤ‘1))
99 fzisfzounsn 10171 . . . . . . . . 9 (𝑥 ∈ (ℤ‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10098, 99syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
10197, 100eqtrd 2198 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥}))
102101sumeq1d 11307 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐺𝑖)))
10393, 102breqtrrd 4010 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
10434, 15syldan 280 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
10534, 23syldan 280 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (𝐺𝑖) ∈ ℝ)
10634, 14syldan 280 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
107106rpge0d 9636 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (1 / (2↑𝑖)))
10834, 70syldan 280 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ (𝐺𝑖))
109104, 105, 107, 108mulge0d 8519 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 0 ≤ ((1 / (2↑𝑖)) · (𝐺𝑖)))
11027, 5, 36, 35, 44, 109isumge0 11371 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 ≤ Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖)))
11126, 45, 103, 110addgtge0d 8418 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
11239, 27, 4, 40, 41, 38isumsplit 11432 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐺𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐺𝑖))))
113111, 112breqtrrd 4010 . . 3 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)))
114 nconstwlpolem0.a . . 3 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
115113, 114breqtrrdi 4024 . 2 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ (𝐺𝑥) = 1)) → 0 < 𝐴)
1161, 115rexlimddv 2588 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  wrex 2445  cun 3114  wss 3116  {csn 3576  {cpr 3577   class class class wbr 3982  cmpt 4043  dom cdm 4604  wf 5184  cfv 5188  (class class class)co 5842  Fincfn 6706  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  cn 8857  2c2 8908  cz 9191  cuz 9466  +crp 9589  ...cfz 9944  ..^cfzo 10077  seqcseq 10380  cexp 10454  cli 11219  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  nconstwlpolem  13943
  Copyright terms: Public domain W3C validator