ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd GIF version

Theorem rpabscxpbnd 13653
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1 (𝜑𝐴 ∈ ℝ+)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
rpabscxpbnd.3 (𝜑 → 0 < (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
rpabscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
2 abscxpbnd.2 . . . . 5 (𝜑𝐵 ∈ ℂ)
3 rpcxpef 13609 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
41, 2, 3syl2anc 409 . . . 4 (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
54fveq2d 5500 . . 3 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
61relogcld 13597 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℝ)
76recnd 7948 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℂ)
82, 7mulcld 7940 . . . 4 (𝜑 → (𝐵 · (log‘𝐴)) ∈ ℂ)
9 absef 11732 . . . 4 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
108, 9syl 14 . . 3 (𝜑 → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
112recld 10902 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
127recld 10902 . . . . . . 7 (𝜑 → (ℜ‘(log‘𝐴)) ∈ ℝ)
1311, 12remulcld 7950 . . . . . 6 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
1413recnd 7948 . . . . 5 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
152imcld 10903 . . . . . . 7 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
167imcld 10903 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
1716renegcld 8299 . . . . . . 7 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℝ)
1815, 17remulcld 7950 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
1918recnd 7948 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
20 efadd 11638 . . . . 5 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2114, 19, 20syl2anc 409 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2215, 16remulcld 7950 . . . . . . . 8 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
2322recnd 7948 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
2414, 23negsubd 8236 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
2515recnd 7948 . . . . . . . 8 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
2616recnd 7948 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
2725, 26mulneg2d 8331 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
2827oveq2d 5869 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
292, 7remuld 10927 . . . . . 6 (𝜑 → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
3024, 28, 293eqtr4d 2213 . . . . 5 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
3130fveq2d 5500 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
326rered 10933 . . . . . . . . 9 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘𝐴))
331rpred 9653 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
341rpge0d 9657 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
3533, 34absidd 11131 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) = 𝐴)
3635fveq2d 5500 . . . . . . . . 9 (𝜑 → (log‘(abs‘𝐴)) = (log‘𝐴))
3732, 36eqtr4d 2206 . . . . . . . 8 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
3837oveq2d 5869 . . . . . . 7 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
3938fveq2d 5500 . . . . . 6 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4035, 1eqeltrd 2247 . . . . . . 7 (𝜑 → (abs‘𝐴) ∈ ℝ+)
4111recnd 7948 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℂ)
42 rpcxpef 13609 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℂ) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4340, 41, 42syl2anc 409 . . . . . 6 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4439, 43eqtr4d 2206 . . . . 5 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
4544oveq1d 5868 . . . 4 (𝜑 → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4621, 31, 453eqtr3d 2211 . . 3 (𝜑 → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
475, 10, 463eqtrd 2207 . 2 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4840, 11rpcxpcld 13646 . . . . 5 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ+)
4948rpred 9653 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
5018reefcld 11632 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
5149, 50remulcld 7950 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
52 abscxpbnd.4 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
53 abscxpbnd.5 . . . . . . 7 (𝜑 → (abs‘𝐴) ≤ 𝑀)
5452, 40, 53rpgecld 9693 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
5554, 11rpcxpcld 13646 . . . . 5 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ+)
5655rpred 9653 . . . 4 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5756, 50remulcld 7950 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
582abscld 11145 . . . . . 6 (𝜑 → (abs‘𝐵) ∈ ℝ)
59 pire 13501 . . . . . 6 π ∈ ℝ
60 remulcl 7902 . . . . . 6 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
6158, 59, 60sylancl 411 . . . . 5 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
6261reefcld 11632 . . . 4 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
6356, 62remulcld 7950 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
6418rpefcld 11649 . . . . 5 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
6564rpge0d 9657 . . . 4 (𝜑 → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
661rpcnd 9655 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
671rpap0d 9659 . . . . . . 7 (𝜑𝐴 # 0)
6866, 67absrpclapd 11152 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6952, 68, 53rpgecld 9693 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
70 rpabscxpbnd.3 . . . . . . 7 (𝜑 → 0 < (ℜ‘𝐵))
7111, 70elrpd 9650 . . . . . 6 (𝜑 → (ℜ‘𝐵) ∈ ℝ+)
72 rpcxple2 13632 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑀 ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℝ+) → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7368, 69, 71, 72syl3anc 1233 . . . . 5 (𝜑 → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7453, 73mpbid 146 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
7549, 56, 50, 65, 74lemul1ad 8855 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
7655rpge0d 9657 . . . 4 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
7725abscld 11145 . . . . . . 7 (𝜑 → (abs‘(ℑ‘𝐵)) ∈ ℝ)
7817recnd 7948 . . . . . . . 8 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℂ)
7978abscld 11145 . . . . . . 7 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
8077, 79remulcld 7950 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8118leabsd 11125 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
8225, 78absmuld 11158 . . . . . . 7 (𝜑 → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8381, 82breqtrd 4015 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8458, 79remulcld 7950 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8578absge0d 11148 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
86 absimle 11048 . . . . . . . . 9 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
872, 86syl 14 . . . . . . . 8 (𝜑 → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
8877, 58, 79, 85, 87lemul1ad 8855 . . . . . . 7 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
8959a1i 9 . . . . . . . 8 (𝜑 → π ∈ ℝ)
902absge0d 11148 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐵))
9126absnegd 11153 . . . . . . . . 9 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
9259renegcli 8181 . . . . . . . . . . . 12 -π ∈ ℝ
93 0re 7920 . . . . . . . . . . . 12 0 ∈ ℝ
94 pipos 13503 . . . . . . . . . . . . 13 0 < π
95 lt0neg2 8388 . . . . . . . . . . . . . 14 (π ∈ ℝ → (0 < π ↔ -π < 0))
9659, 95ax-mp 5 . . . . . . . . . . . . 13 (0 < π ↔ -π < 0)
9794, 96mpbi 144 . . . . . . . . . . . 12 -π < 0
9892, 93, 97ltleii 8022 . . . . . . . . . . 11 -π ≤ 0
996reim0d 10934 . . . . . . . . . . 11 (𝜑 → (ℑ‘(log‘𝐴)) = 0)
10098, 99breqtrrid 4027 . . . . . . . . . 10 (𝜑 → -π ≤ (ℑ‘(log‘𝐴)))
10193, 59, 94ltleii 8022 . . . . . . . . . . 11 0 ≤ π
10299, 101eqbrtrdi 4028 . . . . . . . . . 10 (𝜑 → (ℑ‘(log‘𝐴)) ≤ π)
103 absle 11053 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
10416, 59, 103sylancl 411 . . . . . . . . . 10 (𝜑 → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
105100, 102, 104mpbir2and 939 . . . . . . . . 9 (𝜑 → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
10691, 105eqbrtrd 4011 . . . . . . . 8 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
10779, 89, 58, 90, 106lemul2ad 8856 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10880, 84, 61, 88, 107letrd 8043 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10918, 80, 61, 83, 108letrd 8043 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
110 efle 13491 . . . . . 6 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
11118, 61, 110syl2anc 409 . . . . 5 (𝜑 → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
112109, 111mpbid 146 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
11350, 62, 56, 76, 112lemul2ad 8856 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11451, 57, 63, 75, 113letrd 8043 . 2 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11547, 114eqbrtrd 4011 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090  -cneg 8091  +crp 9610  cre 10804  cim 10805  abscabs 10961  expce 11605  πcpi 11610  logclog 13571  𝑐ccxp 13572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895  ax-addf 7896  ax-mulf 7897
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-map 6628  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-ioo 9849  df-ioc 9850  df-ico 9851  df-icc 9852  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-e 11612  df-sin 11613  df-cos 11614  df-pi 11616  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-cncf 13352  df-limced 13419  df-dvap 13420  df-relog 13573  df-rpcxp 13574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator