ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd GIF version

Theorem rpabscxpbnd 15527
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1 (𝜑𝐴 ∈ ℝ+)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
rpabscxpbnd.3 (𝜑 → 0 < (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
rpabscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
2 abscxpbnd.2 . . . . 5 (𝜑𝐵 ∈ ℂ)
3 rpcxpef 15481 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
41, 2, 3syl2anc 411 . . . 4 (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
54fveq2d 5603 . . 3 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
61relogcld 15469 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℝ)
76recnd 8136 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℂ)
82, 7mulcld 8128 . . . 4 (𝜑 → (𝐵 · (log‘𝐴)) ∈ ℂ)
9 absef 12196 . . . 4 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
108, 9syl 14 . . 3 (𝜑 → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
112recld 11364 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
127recld 11364 . . . . . . 7 (𝜑 → (ℜ‘(log‘𝐴)) ∈ ℝ)
1311, 12remulcld 8138 . . . . . 6 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
1413recnd 8136 . . . . 5 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
152imcld 11365 . . . . . . 7 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
167imcld 11365 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
1716renegcld 8487 . . . . . . 7 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℝ)
1815, 17remulcld 8138 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
1918recnd 8136 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
20 efadd 12101 . . . . 5 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2114, 19, 20syl2anc 411 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2215, 16remulcld 8138 . . . . . . . 8 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
2322recnd 8136 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
2414, 23negsubd 8424 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
2515recnd 8136 . . . . . . . 8 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
2616recnd 8136 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
2725, 26mulneg2d 8519 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
2827oveq2d 5983 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
292, 7remuld 11389 . . . . . 6 (𝜑 → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
3024, 28, 293eqtr4d 2250 . . . . 5 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
3130fveq2d 5603 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
326rered 11395 . . . . . . . . 9 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘𝐴))
331rpred 9853 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
341rpge0d 9857 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
3533, 34absidd 11593 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) = 𝐴)
3635fveq2d 5603 . . . . . . . . 9 (𝜑 → (log‘(abs‘𝐴)) = (log‘𝐴))
3732, 36eqtr4d 2243 . . . . . . . 8 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
3837oveq2d 5983 . . . . . . 7 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
3938fveq2d 5603 . . . . . 6 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4035, 1eqeltrd 2284 . . . . . . 7 (𝜑 → (abs‘𝐴) ∈ ℝ+)
4111recnd 8136 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℂ)
42 rpcxpef 15481 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℂ) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4340, 41, 42syl2anc 411 . . . . . 6 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4439, 43eqtr4d 2243 . . . . 5 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
4544oveq1d 5982 . . . 4 (𝜑 → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4621, 31, 453eqtr3d 2248 . . 3 (𝜑 → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
475, 10, 463eqtrd 2244 . 2 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4840, 11rpcxpcld 15520 . . . . 5 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ+)
4948rpred 9853 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
5018reefcld 12095 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
5149, 50remulcld 8138 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
52 abscxpbnd.4 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
53 abscxpbnd.5 . . . . . . 7 (𝜑 → (abs‘𝐴) ≤ 𝑀)
5452, 40, 53rpgecld 9893 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
5554, 11rpcxpcld 15520 . . . . 5 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ+)
5655rpred 9853 . . . 4 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5756, 50remulcld 8138 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
582abscld 11607 . . . . . 6 (𝜑 → (abs‘𝐵) ∈ ℝ)
59 pire 15373 . . . . . 6 π ∈ ℝ
60 remulcl 8088 . . . . . 6 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
6158, 59, 60sylancl 413 . . . . 5 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
6261reefcld 12095 . . . 4 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
6356, 62remulcld 8138 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
6418rpefcld 12112 . . . . 5 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
6564rpge0d 9857 . . . 4 (𝜑 → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
661rpcnd 9855 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
671rpap0d 9859 . . . . . . 7 (𝜑𝐴 # 0)
6866, 67absrpclapd 11614 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6952, 68, 53rpgecld 9893 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
70 rpabscxpbnd.3 . . . . . . 7 (𝜑 → 0 < (ℜ‘𝐵))
7111, 70elrpd 9850 . . . . . 6 (𝜑 → (ℜ‘𝐵) ∈ ℝ+)
72 rpcxple2 15505 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑀 ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℝ+) → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7368, 69, 71, 72syl3anc 1250 . . . . 5 (𝜑 → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7453, 73mpbid 147 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
7549, 56, 50, 65, 74lemul1ad 9047 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
7655rpge0d 9857 . . . 4 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
7725abscld 11607 . . . . . . 7 (𝜑 → (abs‘(ℑ‘𝐵)) ∈ ℝ)
7817recnd 8136 . . . . . . . 8 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℂ)
7978abscld 11607 . . . . . . 7 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
8077, 79remulcld 8138 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8118leabsd 11587 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
8225, 78absmuld 11620 . . . . . . 7 (𝜑 → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8381, 82breqtrd 4085 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8458, 79remulcld 8138 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8578absge0d 11610 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
86 absimle 11510 . . . . . . . . 9 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
872, 86syl 14 . . . . . . . 8 (𝜑 → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
8877, 58, 79, 85, 87lemul1ad 9047 . . . . . . 7 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
8959a1i 9 . . . . . . . 8 (𝜑 → π ∈ ℝ)
902absge0d 11610 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐵))
9126absnegd 11615 . . . . . . . . 9 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
9259renegcli 8369 . . . . . . . . . . . 12 -π ∈ ℝ
93 0re 8107 . . . . . . . . . . . 12 0 ∈ ℝ
94 pipos 15375 . . . . . . . . . . . . 13 0 < π
95 lt0neg2 8577 . . . . . . . . . . . . . 14 (π ∈ ℝ → (0 < π ↔ -π < 0))
9659, 95ax-mp 5 . . . . . . . . . . . . 13 (0 < π ↔ -π < 0)
9794, 96mpbi 145 . . . . . . . . . . . 12 -π < 0
9892, 93, 97ltleii 8210 . . . . . . . . . . 11 -π ≤ 0
996reim0d 11396 . . . . . . . . . . 11 (𝜑 → (ℑ‘(log‘𝐴)) = 0)
10098, 99breqtrrid 4097 . . . . . . . . . 10 (𝜑 → -π ≤ (ℑ‘(log‘𝐴)))
10193, 59, 94ltleii 8210 . . . . . . . . . . 11 0 ≤ π
10299, 101eqbrtrdi 4098 . . . . . . . . . 10 (𝜑 → (ℑ‘(log‘𝐴)) ≤ π)
103 absle 11515 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
10416, 59, 103sylancl 413 . . . . . . . . . 10 (𝜑 → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
105100, 102, 104mpbir2and 947 . . . . . . . . 9 (𝜑 → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
10691, 105eqbrtrd 4081 . . . . . . . 8 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
10779, 89, 58, 90, 106lemul2ad 9048 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10880, 84, 61, 88, 107letrd 8231 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10918, 80, 61, 83, 108letrd 8231 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
110 efle 15363 . . . . . 6 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
11118, 61, 110syl2anc 411 . . . . 5 (𝜑 → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
112109, 111mpbid 147 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
11350, 62, 56, 76, 112lemul2ad 9048 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11451, 57, 63, 75, 113letrd 8231 . 2 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11547, 114eqbrtrd 4081 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178   class class class wbr 4059  cfv 5290  (class class class)co 5967  cc 7958  cr 7959  0cc0 7960   + caddc 7963   · cmul 7965   < clt 8142  cle 8143  cmin 8278  -cneg 8279  +crp 9810  cre 11266  cim 11267  abscabs 11423  expce 12068  πcpi 12073  logclog 15443  𝑐ccxp 15444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-pre-suploc 8081  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-map 6760  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ioo 10049  df-ioc 10050  df-ico 10051  df-icc 10052  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-shft 11241  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-e 12075  df-sin 12076  df-cos 12077  df-pi 12079  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-cncf 15158  df-limced 15243  df-dvap 15244  df-relog 15445  df-rpcxp 15446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator