ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd GIF version

Theorem rpabscxpbnd 15383
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1 (𝜑𝐴 ∈ ℝ+)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
rpabscxpbnd.3 (𝜑 → 0 < (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
rpabscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
2 abscxpbnd.2 . . . . 5 (𝜑𝐵 ∈ ℂ)
3 rpcxpef 15337 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
41, 2, 3syl2anc 411 . . . 4 (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
54fveq2d 5579 . . 3 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
61relogcld 15325 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℝ)
76recnd 8100 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℂ)
82, 7mulcld 8092 . . . 4 (𝜑 → (𝐵 · (log‘𝐴)) ∈ ℂ)
9 absef 12052 . . . 4 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
108, 9syl 14 . . 3 (𝜑 → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
112recld 11220 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
127recld 11220 . . . . . . 7 (𝜑 → (ℜ‘(log‘𝐴)) ∈ ℝ)
1311, 12remulcld 8102 . . . . . 6 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
1413recnd 8100 . . . . 5 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
152imcld 11221 . . . . . . 7 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
167imcld 11221 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
1716renegcld 8451 . . . . . . 7 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℝ)
1815, 17remulcld 8102 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
1918recnd 8100 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
20 efadd 11957 . . . . 5 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2114, 19, 20syl2anc 411 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2215, 16remulcld 8102 . . . . . . . 8 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
2322recnd 8100 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
2414, 23negsubd 8388 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
2515recnd 8100 . . . . . . . 8 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
2616recnd 8100 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
2725, 26mulneg2d 8483 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
2827oveq2d 5959 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
292, 7remuld 11245 . . . . . 6 (𝜑 → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
3024, 28, 293eqtr4d 2247 . . . . 5 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
3130fveq2d 5579 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
326rered 11251 . . . . . . . . 9 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘𝐴))
331rpred 9817 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
341rpge0d 9821 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
3533, 34absidd 11449 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) = 𝐴)
3635fveq2d 5579 . . . . . . . . 9 (𝜑 → (log‘(abs‘𝐴)) = (log‘𝐴))
3732, 36eqtr4d 2240 . . . . . . . 8 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
3837oveq2d 5959 . . . . . . 7 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
3938fveq2d 5579 . . . . . 6 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4035, 1eqeltrd 2281 . . . . . . 7 (𝜑 → (abs‘𝐴) ∈ ℝ+)
4111recnd 8100 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℂ)
42 rpcxpef 15337 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℂ) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4340, 41, 42syl2anc 411 . . . . . 6 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4439, 43eqtr4d 2240 . . . . 5 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
4544oveq1d 5958 . . . 4 (𝜑 → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4621, 31, 453eqtr3d 2245 . . 3 (𝜑 → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
475, 10, 463eqtrd 2241 . 2 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4840, 11rpcxpcld 15376 . . . . 5 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ+)
4948rpred 9817 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
5018reefcld 11951 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
5149, 50remulcld 8102 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
52 abscxpbnd.4 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
53 abscxpbnd.5 . . . . . . 7 (𝜑 → (abs‘𝐴) ≤ 𝑀)
5452, 40, 53rpgecld 9857 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
5554, 11rpcxpcld 15376 . . . . 5 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ+)
5655rpred 9817 . . . 4 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5756, 50remulcld 8102 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
582abscld 11463 . . . . . 6 (𝜑 → (abs‘𝐵) ∈ ℝ)
59 pire 15229 . . . . . 6 π ∈ ℝ
60 remulcl 8052 . . . . . 6 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
6158, 59, 60sylancl 413 . . . . 5 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
6261reefcld 11951 . . . 4 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
6356, 62remulcld 8102 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
6418rpefcld 11968 . . . . 5 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
6564rpge0d 9821 . . . 4 (𝜑 → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
661rpcnd 9819 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
671rpap0d 9823 . . . . . . 7 (𝜑𝐴 # 0)
6866, 67absrpclapd 11470 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6952, 68, 53rpgecld 9857 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
70 rpabscxpbnd.3 . . . . . . 7 (𝜑 → 0 < (ℜ‘𝐵))
7111, 70elrpd 9814 . . . . . 6 (𝜑 → (ℜ‘𝐵) ∈ ℝ+)
72 rpcxple2 15361 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑀 ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℝ+) → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7368, 69, 71, 72syl3anc 1249 . . . . 5 (𝜑 → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7453, 73mpbid 147 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
7549, 56, 50, 65, 74lemul1ad 9011 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
7655rpge0d 9821 . . . 4 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
7725abscld 11463 . . . . . . 7 (𝜑 → (abs‘(ℑ‘𝐵)) ∈ ℝ)
7817recnd 8100 . . . . . . . 8 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℂ)
7978abscld 11463 . . . . . . 7 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
8077, 79remulcld 8102 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8118leabsd 11443 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
8225, 78absmuld 11476 . . . . . . 7 (𝜑 → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8381, 82breqtrd 4069 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8458, 79remulcld 8102 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8578absge0d 11466 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
86 absimle 11366 . . . . . . . . 9 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
872, 86syl 14 . . . . . . . 8 (𝜑 → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
8877, 58, 79, 85, 87lemul1ad 9011 . . . . . . 7 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
8959a1i 9 . . . . . . . 8 (𝜑 → π ∈ ℝ)
902absge0d 11466 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐵))
9126absnegd 11471 . . . . . . . . 9 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
9259renegcli 8333 . . . . . . . . . . . 12 -π ∈ ℝ
93 0re 8071 . . . . . . . . . . . 12 0 ∈ ℝ
94 pipos 15231 . . . . . . . . . . . . 13 0 < π
95 lt0neg2 8541 . . . . . . . . . . . . . 14 (π ∈ ℝ → (0 < π ↔ -π < 0))
9659, 95ax-mp 5 . . . . . . . . . . . . 13 (0 < π ↔ -π < 0)
9794, 96mpbi 145 . . . . . . . . . . . 12 -π < 0
9892, 93, 97ltleii 8174 . . . . . . . . . . 11 -π ≤ 0
996reim0d 11252 . . . . . . . . . . 11 (𝜑 → (ℑ‘(log‘𝐴)) = 0)
10098, 99breqtrrid 4081 . . . . . . . . . 10 (𝜑 → -π ≤ (ℑ‘(log‘𝐴)))
10193, 59, 94ltleii 8174 . . . . . . . . . . 11 0 ≤ π
10299, 101eqbrtrdi 4082 . . . . . . . . . 10 (𝜑 → (ℑ‘(log‘𝐴)) ≤ π)
103 absle 11371 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
10416, 59, 103sylancl 413 . . . . . . . . . 10 (𝜑 → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
105100, 102, 104mpbir2and 946 . . . . . . . . 9 (𝜑 → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
10691, 105eqbrtrd 4065 . . . . . . . 8 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
10779, 89, 58, 90, 106lemul2ad 9012 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10880, 84, 61, 88, 107letrd 8195 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10918, 80, 61, 83, 108letrd 8195 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
110 efle 15219 . . . . . 6 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
11118, 61, 110syl2anc 411 . . . . 5 (𝜑 → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
112109, 111mpbid 147 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
11350, 62, 56, 76, 112lemul2ad 9012 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11451, 57, 63, 75, 113letrd 8195 . 2 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11547, 114eqbrtrd 4065 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924   + caddc 7927   · cmul 7929   < clt 8106  cle 8107  cmin 8242  -cneg 8243  +crp 9774  cre 11122  cim 11123  abscabs 11279  expce 11924  πcpi 11929  logclog 15299  𝑐ccxp 15300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044  ax-pre-suploc 8045  ax-addf 8046  ax-mulf 8047
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-disj 4021  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-of 6157  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-map 6736  df-pm 6737  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-xneg 9893  df-xadd 9894  df-ioo 10013  df-ioc 10014  df-ico 10015  df-icc 10016  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-fac 10869  df-bc 10891  df-ihash 10919  df-shft 11097  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-clim 11561  df-sumdc 11636  df-ef 11930  df-e 11931  df-sin 11932  df-cos 11933  df-pi 11935  df-rest 13044  df-topgen 13063  df-psmet 14276  df-xmet 14277  df-met 14278  df-bl 14279  df-mopn 14280  df-top 14441  df-topon 14454  df-bases 14486  df-ntr 14539  df-cn 14631  df-cnp 14632  df-tx 14696  df-cncf 15014  df-limced 15099  df-dvap 15100  df-relog 15301  df-rpcxp 15302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator