ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd GIF version

Theorem rpabscxpbnd 15114
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1 (𝜑𝐴 ∈ ℝ+)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
rpabscxpbnd.3 (𝜑 → 0 < (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
rpabscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
2 abscxpbnd.2 . . . . 5 (𝜑𝐵 ∈ ℂ)
3 rpcxpef 15070 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
41, 2, 3syl2anc 411 . . . 4 (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
54fveq2d 5559 . . 3 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
61relogcld 15058 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℝ)
76recnd 8050 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℂ)
82, 7mulcld 8042 . . . 4 (𝜑 → (𝐵 · (log‘𝐴)) ∈ ℂ)
9 absef 11916 . . . 4 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
108, 9syl 14 . . 3 (𝜑 → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
112recld 11085 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
127recld 11085 . . . . . . 7 (𝜑 → (ℜ‘(log‘𝐴)) ∈ ℝ)
1311, 12remulcld 8052 . . . . . 6 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
1413recnd 8050 . . . . 5 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
152imcld 11086 . . . . . . 7 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
167imcld 11086 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
1716renegcld 8401 . . . . . . 7 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℝ)
1815, 17remulcld 8052 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
1918recnd 8050 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
20 efadd 11821 . . . . 5 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2114, 19, 20syl2anc 411 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2215, 16remulcld 8052 . . . . . . . 8 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
2322recnd 8050 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
2414, 23negsubd 8338 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
2515recnd 8050 . . . . . . . 8 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
2616recnd 8050 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
2725, 26mulneg2d 8433 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
2827oveq2d 5935 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
292, 7remuld 11110 . . . . . 6 (𝜑 → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
3024, 28, 293eqtr4d 2236 . . . . 5 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
3130fveq2d 5559 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
326rered 11116 . . . . . . . . 9 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘𝐴))
331rpred 9765 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
341rpge0d 9769 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
3533, 34absidd 11314 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) = 𝐴)
3635fveq2d 5559 . . . . . . . . 9 (𝜑 → (log‘(abs‘𝐴)) = (log‘𝐴))
3732, 36eqtr4d 2229 . . . . . . . 8 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
3837oveq2d 5935 . . . . . . 7 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
3938fveq2d 5559 . . . . . 6 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4035, 1eqeltrd 2270 . . . . . . 7 (𝜑 → (abs‘𝐴) ∈ ℝ+)
4111recnd 8050 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℂ)
42 rpcxpef 15070 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℂ) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4340, 41, 42syl2anc 411 . . . . . 6 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4439, 43eqtr4d 2229 . . . . 5 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
4544oveq1d 5934 . . . 4 (𝜑 → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4621, 31, 453eqtr3d 2234 . . 3 (𝜑 → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
475, 10, 463eqtrd 2230 . 2 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4840, 11rpcxpcld 15107 . . . . 5 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ+)
4948rpred 9765 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
5018reefcld 11815 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
5149, 50remulcld 8052 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
52 abscxpbnd.4 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
53 abscxpbnd.5 . . . . . . 7 (𝜑 → (abs‘𝐴) ≤ 𝑀)
5452, 40, 53rpgecld 9805 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
5554, 11rpcxpcld 15107 . . . . 5 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ+)
5655rpred 9765 . . . 4 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5756, 50remulcld 8052 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
582abscld 11328 . . . . . 6 (𝜑 → (abs‘𝐵) ∈ ℝ)
59 pire 14962 . . . . . 6 π ∈ ℝ
60 remulcl 8002 . . . . . 6 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
6158, 59, 60sylancl 413 . . . . 5 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
6261reefcld 11815 . . . 4 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
6356, 62remulcld 8052 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
6418rpefcld 11832 . . . . 5 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
6564rpge0d 9769 . . . 4 (𝜑 → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
661rpcnd 9767 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
671rpap0d 9771 . . . . . . 7 (𝜑𝐴 # 0)
6866, 67absrpclapd 11335 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6952, 68, 53rpgecld 9805 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
70 rpabscxpbnd.3 . . . . . . 7 (𝜑 → 0 < (ℜ‘𝐵))
7111, 70elrpd 9762 . . . . . 6 (𝜑 → (ℜ‘𝐵) ∈ ℝ+)
72 rpcxple2 15093 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑀 ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℝ+) → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7368, 69, 71, 72syl3anc 1249 . . . . 5 (𝜑 → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7453, 73mpbid 147 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
7549, 56, 50, 65, 74lemul1ad 8960 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
7655rpge0d 9769 . . . 4 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
7725abscld 11328 . . . . . . 7 (𝜑 → (abs‘(ℑ‘𝐵)) ∈ ℝ)
7817recnd 8050 . . . . . . . 8 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℂ)
7978abscld 11328 . . . . . . 7 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
8077, 79remulcld 8052 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8118leabsd 11308 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
8225, 78absmuld 11341 . . . . . . 7 (𝜑 → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8381, 82breqtrd 4056 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8458, 79remulcld 8052 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8578absge0d 11331 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
86 absimle 11231 . . . . . . . . 9 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
872, 86syl 14 . . . . . . . 8 (𝜑 → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
8877, 58, 79, 85, 87lemul1ad 8960 . . . . . . 7 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
8959a1i 9 . . . . . . . 8 (𝜑 → π ∈ ℝ)
902absge0d 11331 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐵))
9126absnegd 11336 . . . . . . . . 9 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
9259renegcli 8283 . . . . . . . . . . . 12 -π ∈ ℝ
93 0re 8021 . . . . . . . . . . . 12 0 ∈ ℝ
94 pipos 14964 . . . . . . . . . . . . 13 0 < π
95 lt0neg2 8490 . . . . . . . . . . . . . 14 (π ∈ ℝ → (0 < π ↔ -π < 0))
9659, 95ax-mp 5 . . . . . . . . . . . . 13 (0 < π ↔ -π < 0)
9794, 96mpbi 145 . . . . . . . . . . . 12 -π < 0
9892, 93, 97ltleii 8124 . . . . . . . . . . 11 -π ≤ 0
996reim0d 11117 . . . . . . . . . . 11 (𝜑 → (ℑ‘(log‘𝐴)) = 0)
10098, 99breqtrrid 4068 . . . . . . . . . 10 (𝜑 → -π ≤ (ℑ‘(log‘𝐴)))
10193, 59, 94ltleii 8124 . . . . . . . . . . 11 0 ≤ π
10299, 101eqbrtrdi 4069 . . . . . . . . . 10 (𝜑 → (ℑ‘(log‘𝐴)) ≤ π)
103 absle 11236 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
10416, 59, 103sylancl 413 . . . . . . . . . 10 (𝜑 → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
105100, 102, 104mpbir2and 946 . . . . . . . . 9 (𝜑 → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
10691, 105eqbrtrd 4052 . . . . . . . 8 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
10779, 89, 58, 90, 106lemul2ad 8961 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10880, 84, 61, 88, 107letrd 8145 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10918, 80, 61, 83, 108letrd 8145 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
110 efle 14952 . . . . . 6 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
11118, 61, 110syl2anc 411 . . . . 5 (𝜑 → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
112109, 111mpbid 147 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
11350, 62, 56, 76, 112lemul2ad 8961 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11451, 57, 63, 75, 113letrd 8145 . 2 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11547, 114eqbrtrd 4052 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192  -cneg 8193  +crp 9722  cre 10987  cim 10988  abscabs 11144  expce 11788  πcpi 11793  logclog 15032  𝑐ccxp 15033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-pre-suploc 7995  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-pm 6707  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-ioo 9961  df-ioc 9962  df-ico 9963  df-icc 9964  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-e 11795  df-sin 11796  df-cos 11797  df-pi 11799  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-tx 14432  df-cncf 14750  df-limced 14835  df-dvap 14836  df-relog 15034  df-rpcxp 15035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator