ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd GIF version

Theorem rpabscxpbnd 15412
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1 (𝜑𝐴 ∈ ℝ+)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
rpabscxpbnd.3 (𝜑 → 0 < (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
rpabscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
2 abscxpbnd.2 . . . . 5 (𝜑𝐵 ∈ ℂ)
3 rpcxpef 15366 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
41, 2, 3syl2anc 411 . . . 4 (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
54fveq2d 5580 . . 3 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
61relogcld 15354 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℝ)
76recnd 8101 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℂ)
82, 7mulcld 8093 . . . 4 (𝜑 → (𝐵 · (log‘𝐴)) ∈ ℂ)
9 absef 12081 . . . 4 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
108, 9syl 14 . . 3 (𝜑 → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
112recld 11249 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
127recld 11249 . . . . . . 7 (𝜑 → (ℜ‘(log‘𝐴)) ∈ ℝ)
1311, 12remulcld 8103 . . . . . 6 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
1413recnd 8101 . . . . 5 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
152imcld 11250 . . . . . . 7 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
167imcld 11250 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
1716renegcld 8452 . . . . . . 7 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℝ)
1815, 17remulcld 8103 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
1918recnd 8101 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
20 efadd 11986 . . . . 5 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2114, 19, 20syl2anc 411 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
2215, 16remulcld 8103 . . . . . . . 8 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
2322recnd 8101 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
2414, 23negsubd 8389 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
2515recnd 8101 . . . . . . . 8 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
2616recnd 8101 . . . . . . . 8 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
2725, 26mulneg2d 8484 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
2827oveq2d 5960 . . . . . 6 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
292, 7remuld 11274 . . . . . 6 (𝜑 → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
3024, 28, 293eqtr4d 2248 . . . . 5 (𝜑 → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
3130fveq2d 5580 . . . 4 (𝜑 → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
326rered 11280 . . . . . . . . 9 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘𝐴))
331rpred 9818 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
341rpge0d 9822 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
3533, 34absidd 11478 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) = 𝐴)
3635fveq2d 5580 . . . . . . . . 9 (𝜑 → (log‘(abs‘𝐴)) = (log‘𝐴))
3732, 36eqtr4d 2241 . . . . . . . 8 (𝜑 → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
3837oveq2d 5960 . . . . . . 7 (𝜑 → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
3938fveq2d 5580 . . . . . 6 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4035, 1eqeltrd 2282 . . . . . . 7 (𝜑 → (abs‘𝐴) ∈ ℝ+)
4111recnd 8101 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℂ)
42 rpcxpef 15366 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℂ) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4340, 41, 42syl2anc 411 . . . . . 6 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
4439, 43eqtr4d 2241 . . . . 5 (𝜑 → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
4544oveq1d 5959 . . . 4 (𝜑 → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4621, 31, 453eqtr3d 2246 . . 3 (𝜑 → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
475, 10, 463eqtrd 2242 . 2 (𝜑 → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
4840, 11rpcxpcld 15405 . . . . 5 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ+)
4948rpred 9818 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
5018reefcld 11980 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
5149, 50remulcld 8103 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
52 abscxpbnd.4 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
53 abscxpbnd.5 . . . . . . 7 (𝜑 → (abs‘𝐴) ≤ 𝑀)
5452, 40, 53rpgecld 9858 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
5554, 11rpcxpcld 15405 . . . . 5 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ+)
5655rpred 9818 . . . 4 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5756, 50remulcld 8103 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
582abscld 11492 . . . . . 6 (𝜑 → (abs‘𝐵) ∈ ℝ)
59 pire 15258 . . . . . 6 π ∈ ℝ
60 remulcl 8053 . . . . . 6 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
6158, 59, 60sylancl 413 . . . . 5 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
6261reefcld 11980 . . . 4 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
6356, 62remulcld 8103 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
6418rpefcld 11997 . . . . 5 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
6564rpge0d 9822 . . . 4 (𝜑 → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
661rpcnd 9820 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
671rpap0d 9824 . . . . . . 7 (𝜑𝐴 # 0)
6866, 67absrpclapd 11499 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6952, 68, 53rpgecld 9858 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
70 rpabscxpbnd.3 . . . . . . 7 (𝜑 → 0 < (ℜ‘𝐵))
7111, 70elrpd 9815 . . . . . 6 (𝜑 → (ℜ‘𝐵) ∈ ℝ+)
72 rpcxple2 15390 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑀 ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℝ+) → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7368, 69, 71, 72syl3anc 1250 . . . . 5 (𝜑 → ((abs‘𝐴) ≤ 𝑀 ↔ ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵))))
7453, 73mpbid 147 . . . 4 (𝜑 → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
7549, 56, 50, 65, 74lemul1ad 9012 . . 3 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
7655rpge0d 9822 . . . 4 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
7725abscld 11492 . . . . . . 7 (𝜑 → (abs‘(ℑ‘𝐵)) ∈ ℝ)
7817recnd 8101 . . . . . . . 8 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℂ)
7978abscld 11492 . . . . . . 7 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
8077, 79remulcld 8103 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8118leabsd 11472 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
8225, 78absmuld 11505 . . . . . . 7 (𝜑 → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8381, 82breqtrd 4070 . . . . . 6 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
8458, 79remulcld 8103 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
8578absge0d 11495 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
86 absimle 11395 . . . . . . . . 9 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
872, 86syl 14 . . . . . . . 8 (𝜑 → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
8877, 58, 79, 85, 87lemul1ad 9012 . . . . . . 7 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
8959a1i 9 . . . . . . . 8 (𝜑 → π ∈ ℝ)
902absge0d 11495 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐵))
9126absnegd 11500 . . . . . . . . 9 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
9259renegcli 8334 . . . . . . . . . . . 12 -π ∈ ℝ
93 0re 8072 . . . . . . . . . . . 12 0 ∈ ℝ
94 pipos 15260 . . . . . . . . . . . . 13 0 < π
95 lt0neg2 8542 . . . . . . . . . . . . . 14 (π ∈ ℝ → (0 < π ↔ -π < 0))
9659, 95ax-mp 5 . . . . . . . . . . . . 13 (0 < π ↔ -π < 0)
9794, 96mpbi 145 . . . . . . . . . . . 12 -π < 0
9892, 93, 97ltleii 8175 . . . . . . . . . . 11 -π ≤ 0
996reim0d 11281 . . . . . . . . . . 11 (𝜑 → (ℑ‘(log‘𝐴)) = 0)
10098, 99breqtrrid 4082 . . . . . . . . . 10 (𝜑 → -π ≤ (ℑ‘(log‘𝐴)))
10193, 59, 94ltleii 8175 . . . . . . . . . . 11 0 ≤ π
10299, 101eqbrtrdi 4083 . . . . . . . . . 10 (𝜑 → (ℑ‘(log‘𝐴)) ≤ π)
103 absle 11400 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
10416, 59, 103sylancl 413 . . . . . . . . . 10 (𝜑 → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
105100, 102, 104mpbir2and 947 . . . . . . . . 9 (𝜑 → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
10691, 105eqbrtrd 4066 . . . . . . . 8 (𝜑 → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
10779, 89, 58, 90, 106lemul2ad 9013 . . . . . . 7 (𝜑 → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10880, 84, 61, 88, 107letrd 8196 . . . . . 6 (𝜑 → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
10918, 80, 61, 83, 108letrd 8196 . . . . 5 (𝜑 → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
110 efle 15248 . . . . . 6 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
11118, 61, 110syl2anc 411 . . . . 5 (𝜑 → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
112109, 111mpbid 147 . . . 4 (𝜑 → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
11350, 62, 56, 76, 112lemul2ad 9013 . . 3 (𝜑 → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11451, 57, 63, 75, 113letrd 8196 . 2 (𝜑 → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
11547, 114eqbrtrd 4066 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  cc 7923  cr 7924  0cc0 7925   + caddc 7928   · cmul 7930   < clt 8107  cle 8108  cmin 8243  -cneg 8244  +crp 9775  cre 11151  cim 11152  abscabs 11308  expce 11953  πcpi 11958  logclog 15328  𝑐ccxp 15329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-pre-suploc 8046  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-map 6737  df-pm 6738  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-ioo 10014  df-ioc 10015  df-ico 10016  df-icc 10017  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-bc 10893  df-ihash 10921  df-shft 11126  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959  df-e 11960  df-sin 11961  df-cos 11962  df-pi 11964  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-ntr 14568  df-cn 14660  df-cnp 14661  df-tx 14725  df-cncf 15043  df-limced 15128  df-dvap 15129  df-relog 15330  df-rpcxp 15331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator