Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemlt1 GIF version

Theorem trilpolemlt1 15173
Description: Lemma for trilpo 15175. The 𝐴 < 1 case. We can use the distance between 𝐴 and one (that is, 1 − 𝐴) to find a position in the sequence 𝑛 where terms after that point will not add up to as much as 1 − 𝐴. By finomni 7155 we know the terms up to 𝑛 either contain a zero or are all one. But if they are all one that contradicts the way we constructed 𝑛, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemlt1.a (𝜑𝐴 < 1)
Assertion
Ref Expression
trilpolemlt1 (𝜑 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
Distinct variable groups:   𝐴,𝑖,𝑥   𝑥,𝐹,𝑖   𝜑,𝑖,𝑥

Proof of Theorem trilpolemlt1
Dummy variables 𝑛 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 7989 . . . 4 (𝜑 → 1 ∈ ℝ)
2 trilpolemgt1.f . . . . 5 (𝜑𝐹:ℕ⟶{0, 1})
3 trilpolemgt1.a . . . . 5 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
42, 3trilpolemcl 15169 . . . 4 (𝜑𝐴 ∈ ℝ)
51, 4resubcld 8355 . . 3 (𝜑 → (1 − 𝐴) ∈ ℝ)
6 trilpolemlt1.a . . . 4 (𝜑𝐴 < 1)
74, 1posdifd 8506 . . . 4 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
86, 7mpbid 147 . . 3 (𝜑 → 0 < (1 − 𝐴))
9 nnrecl 9191 . . 3 (((1 − 𝐴) ∈ ℝ ∧ 0 < (1 − 𝐴)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (1 − 𝐴))
105, 8, 9syl2anc 411 . 2 (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < (1 − 𝐴))
11 elfznn 10071 . . . . . . 7 (𝑥 ∈ (1...𝑛) → 𝑥 ∈ ℕ)
1211ad2antrl 490 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ ℕ)
13 simprl 529 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ (1...𝑛))
1413fvresd 5554 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = (𝐹𝑥))
15 simprr 531 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)
1614, 15eqtr3d 2223 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝐹𝑥) = 0)
1712, 16jca 306 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝑥 ∈ ℕ ∧ (𝐹𝑥) = 0))
1817ex 115 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0) → (𝑥 ∈ ℕ ∧ (𝐹𝑥) = 0)))
1918reximdv2 2588 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0))
20 2rp 9675 . . . . . . . . . 10 2 ∈ ℝ+
2120a1i 9 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈ ℝ+)
22 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ)
2322nnzd 9391 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℤ)
2421, 23rpexpcld 10695 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (2↑𝑛) ∈ ℝ+)
2524rprecred 9725 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) ∈ ℝ)
2622nnrecred 8983 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) ∈ ℝ)
275adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 − 𝐴) ∈ ℝ)
28 2z 9298 . . . . . . . . . 10 2 ∈ ℤ
29 uzid 9559 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3028, 29mp1i 10 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈ (ℤ‘2))
3122nnnn0d 9246 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ0)
32 bernneq3 10660 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛))
3330, 31, 32syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 < (2↑𝑛))
3422nnrpd 9711 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℝ+)
3534, 24ltrecd 9732 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝑛 < (2↑𝑛) ↔ (1 / (2↑𝑛)) < (1 / 𝑛)))
3633, 35mpbid 147 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 / 𝑛))
37 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) < (1 − 𝐴))
3825, 26, 27, 36, 37lttrd 8100 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 − 𝐴))
3938adantr 276 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) < (1 − 𝐴))
4027adantr 276 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ∈ ℝ)
4125adantr 276 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) ∈ ℝ)
42 1red 7989 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈ ℝ)
434ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 ∈ ℝ)
44 0red 7975 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ∈ ℝ)
45 eqid 2188 . . . . . . . . . . 11 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
4622adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℕ)
4746peano2nnd 8951 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℕ)
4847nnzd 9391 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℤ)
49 eluznn 9617 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 𝑖 ∈ ℕ)
5047, 49sylan 283 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 𝑖 ∈ ℕ)
51 eqid 2188 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗))) = (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))
52 oveq2 5898 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (2↑𝑗) = (2↑𝑖))
5352oveq2d 5906 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (1 / (2↑𝑗)) = (1 / (2↑𝑖)))
54 fveq2 5529 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5553, 54oveq12d 5908 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → ((1 / (2↑𝑗)) · (𝐹𝑗)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
56 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
5720a1i 9 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
5856nnzd 9391 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
5957, 58rpexpcld 10695 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
6059rprecred 9725 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
61 0re 7974 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
62 1re 7973 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
63 prssi 3764 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
6461, 62, 63mp2an 426 . . . . . . . . . . . . . . 15 {0, 1} ⊆ ℝ
652adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝐹:ℕ⟶{0, 1})
6665ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶{0, 1})
6766, 56ffvelcdmd 5667 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
6864, 67sselid 3167 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
6960, 68remulcld 8005 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
7051, 55, 56, 69fvmptd3 5624 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
7150, 70syldan 282 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
7250, 69syldan 282 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
7365adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐹:ℕ⟶{0, 1})
7473, 51trilpolemclim 15168 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ )
75 nnuz 9580 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
7669recnd 8003 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℂ)
7770, 76eqeltrd 2265 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))‘𝑖) ∈ ℂ)
7875, 47, 77iserex 11364 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ ))
7974, 78mpbid 147 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ )
8045, 48, 71, 72, 79isumrecl 11454 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
81 1zzd 9297 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈ ℤ)
8281, 23fzfigd 10448 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Fin)
8382adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...𝑛) ∈ Fin)
8420a1i 9 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 2 ∈ ℝ+)
85 elfzelz 10042 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℤ)
8685adantl 277 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℤ)
8784, 86rpexpcld 10695 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (2↑𝑖) ∈ ℝ+)
8887rprecred 9725 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℝ)
8983, 88fsumrecl 11426 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℝ)
9050, 60syldan 282 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
9150, 68syldan 282 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑖) ∈ ℝ)
9259rpreccld 9724 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
9350, 92syldan 282 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
9493rpge0d 9717 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 0 ≤ (1 / (2↑𝑖)))
95 0le0 9025 . . . . . . . . . . . . . 14 0 ≤ 0
96 simpr 110 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
9795, 96breqtrrid 4055 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 0) → 0 ≤ (𝐹𝑖))
98 0le1 8455 . . . . . . . . . . . . . 14 0 ≤ 1
99 simpr 110 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
10098, 99breqtrrid 4055 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 1) → 0 ≤ (𝐹𝑖))
10173adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 𝐹:ℕ⟶{0, 1})
102101, 50ffvelcdmd 5667 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑖) ∈ {0, 1})
103 elpri 3629 . . . . . . . . . . . . . 14 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
104102, 103syl 14 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
10597, 100, 104mpjaodan 799 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 0 ≤ (𝐹𝑖))
10690, 91, 94, 105mulge0d 8595 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 0 ≤ ((1 / (2↑𝑖)) · (𝐹𝑖)))
10745, 48, 71, 72, 79, 106isumge0 11455 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ≤ Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)))
10844, 80, 89, 107leadd2dd 8534 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
10989recnd 8003 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℂ)
110109addid1d 8123 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)))
111110eqcomd 2194 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0))
11275, 45, 47, 70, 76, 74isumsplit 11516 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
1133, 112eqtrid 2233 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
11446nncnd 8950 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℂ)
115 1cnd 7990 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈ ℂ)
116114, 115pncand 8286 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ((𝑛 + 1) − 1) = 𝑛)
117116oveq2d 5906 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...((𝑛 + 1) − 1)) = (1...𝑛))
118 simpr 110 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ (1...𝑛))
119118fvresd 5554 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = (𝐹𝑖))
120 fveqeq2 5538 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑖 → (((𝐹 ↾ (1...𝑛))‘𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑖) = 1))
121 simplr 528 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)
122120, 121, 118rspcdva 2860 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = 1)
123119, 122eqtr3d 2223 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (𝐹𝑖) = 1)
124123oveq2d 5906 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
12587rpreccld 9724 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℝ+)
126125rpcnd 9715 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℂ)
127126mulridd 7991 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
128124, 127eqtrd 2221 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
129117, 128sumeq12rdv 11398 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)))
130129oveq1d 5905 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
131113, 130eqtrd 2221 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
132108, 111, 1313brtr4d 4049 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴)
133 geo2sum 11539 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) = (1 − (1 / (2↑𝑛))))
134133breq1d 4027 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 1 ∈ ℂ) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 / (2↑𝑛))) ≤ 𝐴))
13546, 115, 134syl2anc 411 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 / (2↑𝑛))) ≤ 𝐴))
136132, 135mpbid 147 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − (1 / (2↑𝑛))) ≤ 𝐴)
13742, 41, 43, 136subled 8522 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ≤ (1 / (2↑𝑛)))
13840, 41, 137lensymd 8096 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ¬ (1 / (2↑𝑛)) < (1 − 𝐴))
13939, 138pm2.21dd 621 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
140139ex 115 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0))
141 fveq1 5528 . . . . . . 7 (𝑓 = (𝐹 ↾ (1...𝑛)) → (𝑓𝑥) = ((𝐹 ↾ (1...𝑛))‘𝑥))
142141eqeq1d 2197 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓𝑥) = 0 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0))
143142rexbidv 2490 . . . . 5 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ↔ ∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0))
144141eqeq1d 2197 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 1))
145144ralbidv 2489 . . . . 5 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1 ↔ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1))
146143, 145orbi12d 794 . . . 4 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1) ↔ (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)))
147 finomni 7155 . . . . . 6 ((1...𝑛) ∈ Fin → (1...𝑛) ∈ Omni)
14882, 147syl 14 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Omni)
149 isomninn 15163 . . . . . 6 ((1...𝑛) ∈ Omni → ((1...𝑛) ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1)))
150148, 149syl 14 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((1...𝑛) ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1)))
151148, 150mpbid 147 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∀𝑓 ∈ ({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1))
152 fz1ssnn 10073 . . . . . . 7 (1...𝑛) ⊆ ℕ
153152a1i 9 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ⊆ ℕ)
15465, 153fssresd 5406 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1})
155 0red 7975 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 0 ∈ ℝ)
156 1red 7989 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈ ℝ)
157 prexg 4225 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ∈ V)
158155, 156, 157syl2anc 411 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → {0, 1} ∈ V)
159158, 82elmapd 6679 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚 (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1}))
160154, 159mpbird 167 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚 (1...𝑛)))
161146, 151, 160rspcdva 2860 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1))
16219, 140, 161mpjaod 719 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
16310, 162rexlimddv 2611 1 (𝜑 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1363  wcel 2159  wral 2467  wrex 2468  Vcvv 2751  wss 3143  {cpr 3607   class class class wbr 4017  cmpt 4078  dom cdm 4640  cres 4642  wf 5226  cfv 5230  (class class class)co 5890  𝑚 cmap 6665  Fincfn 6757  Omnicomni 7149  cc 7826  cr 7827  0cc0 7828  1c1 7829   + caddc 7831   · cmul 7833   < clt 8009  cle 8010  cmin 8145   / cdiv 8646  cn 8936  2c2 8987  0cn0 9193  cz 9270  cuz 9545  +crp 9670  ...cfz 10025  seqcseq 10462  cexp 10536  cli 11303  Σcsu 11378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulrcl 7927  ax-addcom 7928  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-1rid 7935  ax-0id 7936  ax-rnegex 7937  ax-precex 7938  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-apti 7943  ax-pre-ltadd 7944  ax-pre-mulgt0 7945  ax-pre-mulext 7946  ax-arch 7947  ax-caucvg 7948
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-if 3549  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-ilim 4383  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-isom 5239  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-irdg 6388  df-frec 6409  df-1o 6434  df-2o 6435  df-oadd 6438  df-er 6552  df-map 6667  df-en 6758  df-dom 6759  df-fin 6760  df-omni 7150  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-reap 8549  df-ap 8556  df-div 8647  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-n0 9194  df-z 9271  df-uz 9546  df-q 9637  df-rp 9671  df-ico 9911  df-fz 10026  df-fzo 10160  df-seqfrec 10463  df-exp 10537  df-ihash 10773  df-cj 10868  df-re 10869  df-im 10870  df-rsqrt 11024  df-abs 11025  df-clim 11304  df-sumdc 11379
This theorem is referenced by:  trilpolemres  15174  neapmkvlem  15199
  Copyright terms: Public domain W3C validator