Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemlt1 GIF version

Theorem trilpolemlt1 14445
Description: Lemma for trilpo 14447. The 𝐴 < 1 case. We can use the distance between 𝐴 and one (that is, 1 − 𝐴) to find a position in the sequence 𝑛 where terms after that point will not add up to as much as 1 − 𝐴. By finomni 7132 we know the terms up to 𝑛 either contain a zero or are all one. But if they are all one that contradicts the way we constructed 𝑛, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemlt1.a (𝜑𝐴 < 1)
Assertion
Ref Expression
trilpolemlt1 (𝜑 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
Distinct variable groups:   𝐴,𝑖,𝑥   𝑥,𝐹,𝑖   𝜑,𝑖,𝑥

Proof of Theorem trilpolemlt1
Dummy variables 𝑛 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 7963 . . . 4 (𝜑 → 1 ∈ ℝ)
2 trilpolemgt1.f . . . . 5 (𝜑𝐹:ℕ⟶{0, 1})
3 trilpolemgt1.a . . . . 5 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
42, 3trilpolemcl 14441 . . . 4 (𝜑𝐴 ∈ ℝ)
51, 4resubcld 8328 . . 3 (𝜑 → (1 − 𝐴) ∈ ℝ)
6 trilpolemlt1.a . . . 4 (𝜑𝐴 < 1)
74, 1posdifd 8479 . . . 4 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
86, 7mpbid 147 . . 3 (𝜑 → 0 < (1 − 𝐴))
9 nnrecl 9163 . . 3 (((1 − 𝐴) ∈ ℝ ∧ 0 < (1 − 𝐴)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (1 − 𝐴))
105, 8, 9syl2anc 411 . 2 (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < (1 − 𝐴))
11 elfznn 10040 . . . . . . 7 (𝑥 ∈ (1...𝑛) → 𝑥 ∈ ℕ)
1211ad2antrl 490 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ ℕ)
13 simprl 529 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ (1...𝑛))
1413fvresd 5536 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = (𝐹𝑥))
15 simprr 531 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)
1614, 15eqtr3d 2212 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝐹𝑥) = 0)
1712, 16jca 306 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝑥 ∈ ℕ ∧ (𝐹𝑥) = 0))
1817ex 115 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0) → (𝑥 ∈ ℕ ∧ (𝐹𝑥) = 0)))
1918reximdv2 2576 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0))
20 2rp 9645 . . . . . . . . . 10 2 ∈ ℝ+
2120a1i 9 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈ ℝ+)
22 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ)
2322nnzd 9363 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℤ)
2421, 23rpexpcld 10663 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (2↑𝑛) ∈ ℝ+)
2524rprecred 9695 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) ∈ ℝ)
2622nnrecred 8955 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) ∈ ℝ)
275adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 − 𝐴) ∈ ℝ)
28 2z 9270 . . . . . . . . . 10 2 ∈ ℤ
29 uzid 9531 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3028, 29mp1i 10 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈ (ℤ‘2))
3122nnnn0d 9218 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ0)
32 bernneq3 10628 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛))
3330, 31, 32syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 < (2↑𝑛))
3422nnrpd 9681 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℝ+)
3534, 24ltrecd 9702 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝑛 < (2↑𝑛) ↔ (1 / (2↑𝑛)) < (1 / 𝑛)))
3633, 35mpbid 147 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 / 𝑛))
37 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) < (1 − 𝐴))
3825, 26, 27, 36, 37lttrd 8073 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 − 𝐴))
3938adantr 276 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) < (1 − 𝐴))
4027adantr 276 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ∈ ℝ)
4125adantr 276 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) ∈ ℝ)
42 1red 7963 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈ ℝ)
434ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 ∈ ℝ)
44 0red 7949 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ∈ ℝ)
45 eqid 2177 . . . . . . . . . . 11 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
4622adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℕ)
4746peano2nnd 8923 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℕ)
4847nnzd 9363 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℤ)
49 eluznn 9589 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 𝑖 ∈ ℕ)
5047, 49sylan 283 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 𝑖 ∈ ℕ)
51 eqid 2177 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗))) = (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))
52 oveq2 5877 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (2↑𝑗) = (2↑𝑖))
5352oveq2d 5885 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (1 / (2↑𝑗)) = (1 / (2↑𝑖)))
54 fveq2 5511 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5553, 54oveq12d 5887 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → ((1 / (2↑𝑗)) · (𝐹𝑗)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
56 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
5720a1i 9 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
5856nnzd 9363 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
5957, 58rpexpcld 10663 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
6059rprecred 9695 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
61 0re 7948 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
62 1re 7947 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
63 prssi 3749 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
6461, 62, 63mp2an 426 . . . . . . . . . . . . . . 15 {0, 1} ⊆ ℝ
652adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝐹:ℕ⟶{0, 1})
6665ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶{0, 1})
6766, 56ffvelcdmd 5648 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
6864, 67sselid 3153 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
6960, 68remulcld 7978 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
7051, 55, 56, 69fvmptd3 5605 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
7150, 70syldan 282 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
7250, 69syldan 282 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
7365adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐹:ℕ⟶{0, 1})
7473, 51trilpolemclim 14440 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ )
75 nnuz 9552 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
7669recnd 7976 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℂ)
7770, 76eqeltrd 2254 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))‘𝑖) ∈ ℂ)
7875, 47, 77iserex 11331 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ ))
7974, 78mpbid 147 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ )
8045, 48, 71, 72, 79isumrecl 11421 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
81 1zzd 9269 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈ ℤ)
8281, 23fzfigd 10417 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Fin)
8382adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...𝑛) ∈ Fin)
8420a1i 9 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 2 ∈ ℝ+)
85 elfzelz 10011 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℤ)
8685adantl 277 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℤ)
8784, 86rpexpcld 10663 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (2↑𝑖) ∈ ℝ+)
8887rprecred 9695 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℝ)
8983, 88fsumrecl 11393 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℝ)
9050, 60syldan 282 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
9150, 68syldan 282 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑖) ∈ ℝ)
9259rpreccld 9694 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
9350, 92syldan 282 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
9493rpge0d 9687 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 0 ≤ (1 / (2↑𝑖)))
95 0le0 8997 . . . . . . . . . . . . . 14 0 ≤ 0
96 simpr 110 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
9795, 96breqtrrid 4038 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 0) → 0 ≤ (𝐹𝑖))
98 0le1 8428 . . . . . . . . . . . . . 14 0 ≤ 1
99 simpr 110 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
10098, 99breqtrrid 4038 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 1) → 0 ≤ (𝐹𝑖))
10173adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 𝐹:ℕ⟶{0, 1})
102101, 50ffvelcdmd 5648 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑖) ∈ {0, 1})
103 elpri 3614 . . . . . . . . . . . . . 14 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
104102, 103syl 14 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
10597, 100, 104mpjaodan 798 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 0 ≤ (𝐹𝑖))
10690, 91, 94, 105mulge0d 8568 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 0 ≤ ((1 / (2↑𝑖)) · (𝐹𝑖)))
10745, 48, 71, 72, 79, 106isumge0 11422 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ≤ Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)))
10844, 80, 89, 107leadd2dd 8507 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
10989recnd 7976 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℂ)
110109addid1d 8096 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)))
111110eqcomd 2183 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0))
11275, 45, 47, 70, 76, 74isumsplit 11483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
1133, 112eqtrid 2222 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
11446nncnd 8922 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℂ)
115 1cnd 7964 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈ ℂ)
116114, 115pncand 8259 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ((𝑛 + 1) − 1) = 𝑛)
117116oveq2d 5885 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...((𝑛 + 1) − 1)) = (1...𝑛))
118 simpr 110 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ (1...𝑛))
119118fvresd 5536 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = (𝐹𝑖))
120 fveqeq2 5520 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑖 → (((𝐹 ↾ (1...𝑛))‘𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑖) = 1))
121 simplr 528 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)
122120, 121, 118rspcdva 2846 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = 1)
123119, 122eqtr3d 2212 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (𝐹𝑖) = 1)
124123oveq2d 5885 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
12587rpreccld 9694 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℝ+)
126125rpcnd 9685 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℂ)
127126mulid1d 7965 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
128124, 127eqtrd 2210 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
129117, 128sumeq12rdv 11365 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)))
130129oveq1d 5884 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
131113, 130eqtrd 2210 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
132108, 111, 1313brtr4d 4032 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴)
133 geo2sum 11506 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) = (1 − (1 / (2↑𝑛))))
134133breq1d 4010 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 1 ∈ ℂ) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 / (2↑𝑛))) ≤ 𝐴))
13546, 115, 134syl2anc 411 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 / (2↑𝑛))) ≤ 𝐴))
136132, 135mpbid 147 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − (1 / (2↑𝑛))) ≤ 𝐴)
13742, 41, 43, 136subled 8495 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ≤ (1 / (2↑𝑛)))
13840, 41, 137lensymd 8069 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ¬ (1 / (2↑𝑛)) < (1 − 𝐴))
13939, 138pm2.21dd 620 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
140139ex 115 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0))
141 fveq1 5510 . . . . . . 7 (𝑓 = (𝐹 ↾ (1...𝑛)) → (𝑓𝑥) = ((𝐹 ↾ (1...𝑛))‘𝑥))
142141eqeq1d 2186 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓𝑥) = 0 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0))
143142rexbidv 2478 . . . . 5 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ↔ ∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0))
144141eqeq1d 2186 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 1))
145144ralbidv 2477 . . . . 5 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1 ↔ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1))
146143, 145orbi12d 793 . . . 4 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1) ↔ (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)))
147 finomni 7132 . . . . . 6 ((1...𝑛) ∈ Fin → (1...𝑛) ∈ Omni)
14882, 147syl 14 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Omni)
149 isomninn 14435 . . . . . 6 ((1...𝑛) ∈ Omni → ((1...𝑛) ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1)))
150148, 149syl 14 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((1...𝑛) ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1)))
151148, 150mpbid 147 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∀𝑓 ∈ ({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1))
152 fz1ssnn 10042 . . . . . . 7 (1...𝑛) ⊆ ℕ
153152a1i 9 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ⊆ ℕ)
15465, 153fssresd 5388 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1})
155 0red 7949 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 0 ∈ ℝ)
156 1red 7963 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈ ℝ)
157 prexg 4208 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ∈ V)
158155, 156, 157syl2anc 411 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → {0, 1} ∈ V)
159158, 82elmapd 6656 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚 (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1}))
160154, 159mpbird 167 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚 (1...𝑛)))
161146, 151, 160rspcdva 2846 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1))
16219, 140, 161mpjaod 718 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
16310, 162rexlimddv 2599 1 (𝜑 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  wral 2455  wrex 2456  Vcvv 2737  wss 3129  {cpr 3592   class class class wbr 4000  cmpt 4061  dom cdm 4623  cres 4625  wf 5208  cfv 5212  (class class class)co 5869  𝑚 cmap 6642  Fincfn 6734  Omnicomni 7126  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  cn 8908  2c2 8959  0cn0 9165  cz 9242  cuz 9517  +crp 9640  ...cfz 9995  seqcseq 10431  cexp 10505  cli 11270  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-map 6644  df-en 6735  df-dom 6736  df-fin 6737  df-omni 7127  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  trilpolemres  14446  neapmkvlem  14470
  Copyright terms: Public domain W3C validator