| Step | Hyp | Ref
 | Expression | 
| 1 |   | 1red 8041 | 
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) | 
| 2 |   | trilpolemgt1.f | 
. . . . 5
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) | 
| 3 |   | trilpolemgt1.a | 
. . . . 5
⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) | 
| 4 | 2, 3 | trilpolemcl 15681 | 
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 5 | 1, 4 | resubcld 8407 | 
. . 3
⊢ (𝜑 → (1 − 𝐴) ∈
ℝ) | 
| 6 |   | trilpolemlt1.a | 
. . . 4
⊢ (𝜑 → 𝐴 < 1) | 
| 7 | 4, 1 | posdifd 8559 | 
. . . 4
⊢ (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴))) | 
| 8 | 6, 7 | mpbid 147 | 
. . 3
⊢ (𝜑 → 0 < (1 − 𝐴)) | 
| 9 |   | nnrecl 9247 | 
. . 3
⊢ (((1
− 𝐴) ∈ ℝ
∧ 0 < (1 − 𝐴))
→ ∃𝑛 ∈
ℕ (1 / 𝑛) < (1
− 𝐴)) | 
| 10 | 5, 8, 9 | syl2anc 411 | 
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < (1 − 𝐴)) | 
| 11 |   | elfznn 10129 | 
. . . . . . 7
⊢ (𝑥 ∈ (1...𝑛) → 𝑥 ∈ ℕ) | 
| 12 | 11 | ad2antrl 490 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ ℕ) | 
| 13 |   | simprl 529 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ (1...𝑛)) | 
| 14 | 13 | fvresd 5583 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = (𝐹‘𝑥)) | 
| 15 |   | simprr 531 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = 0) | 
| 16 | 14, 15 | eqtr3d 2231 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝐹‘𝑥) = 0) | 
| 17 | 12, 16 | jca 306 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝑥 ∈ ℕ ∧ (𝐹‘𝑥) = 0)) | 
| 18 | 17 | ex 115 | 
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0) → (𝑥 ∈ ℕ ∧ (𝐹‘𝑥) = 0))) | 
| 19 | 18 | reximdv2 2596 | 
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0)) | 
| 20 |   | 2rp 9733 | 
. . . . . . . . . 10
⊢ 2 ∈
ℝ+ | 
| 21 | 20 | a1i 9 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈
ℝ+) | 
| 22 |   | simprl 529 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ) | 
| 23 | 22 | nnzd 9447 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℤ) | 
| 24 | 21, 23 | rpexpcld 10789 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (2↑𝑛) ∈
ℝ+) | 
| 25 | 24 | rprecred 9783 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) ∈ ℝ) | 
| 26 | 22 | nnrecred 9037 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) ∈ ℝ) | 
| 27 | 5 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 − 𝐴) ∈ ℝ) | 
| 28 |   | 2z 9354 | 
. . . . . . . . . 10
⊢ 2 ∈
ℤ | 
| 29 |   | uzid 9615 | 
. . . . . . . . . 10
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) | 
| 30 | 28, 29 | mp1i 10 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈
(ℤ≥‘2)) | 
| 31 | 22 | nnnn0d 9302 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ0) | 
| 32 |   | bernneq3 10754 | 
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛)) | 
| 33 | 30, 31, 32 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 < (2↑𝑛)) | 
| 34 | 22 | nnrpd 9769 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℝ+) | 
| 35 | 34, 24 | ltrecd 9790 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝑛 < (2↑𝑛) ↔ (1 / (2↑𝑛)) < (1 / 𝑛))) | 
| 36 | 33, 35 | mpbid 147 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 / 𝑛)) | 
| 37 |   | simprr 531 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) < (1 − 𝐴)) | 
| 38 | 25, 26, 27, 36, 37 | lttrd 8152 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 − 𝐴)) | 
| 39 | 38 | adantr 276 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) < (1 − 𝐴)) | 
| 40 | 27 | adantr 276 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ∈ ℝ) | 
| 41 | 25 | adantr 276 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) ∈ ℝ) | 
| 42 |   | 1red 8041 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈
ℝ) | 
| 43 | 4 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 ∈ ℝ) | 
| 44 |   | 0red 8027 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ∈
ℝ) | 
| 45 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(ℤ≥‘(𝑛 + 1)) = (ℤ≥‘(𝑛 + 1)) | 
| 46 | 22 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℕ) | 
| 47 | 46 | peano2nnd 9005 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℕ) | 
| 48 | 47 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℤ) | 
| 49 |   | eluznn 9674 | 
. . . . . . . . . . . . 13
⊢ (((𝑛 + 1) ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑖 ∈ ℕ) | 
| 50 | 47, 49 | sylan 283 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑖 ∈
ℕ) | 
| 51 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ ↦ ((1 /
(2↑𝑗)) · (𝐹‘𝑗))) = (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗))) | 
| 52 |   | oveq2 5930 | 
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (2↑𝑗) = (2↑𝑖)) | 
| 53 | 52 | oveq2d 5938 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → (1 / (2↑𝑗)) = (1 / (2↑𝑖))) | 
| 54 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → (𝐹‘𝑗) = (𝐹‘𝑖)) | 
| 55 | 53, 54 | oveq12d 5940 | 
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → ((1 / (2↑𝑗)) · (𝐹‘𝑗)) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) | 
| 56 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | 
| 57 | 20 | a1i 9 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 2 ∈
ℝ+) | 
| 58 | 56 | nnzd 9447 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) | 
| 59 | 57, 58 | rpexpcld 10789 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈
ℝ+) | 
| 60 | 59 | rprecred 9783 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ) | 
| 61 |   | 0re 8026 | 
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ | 
| 62 |   | 1re 8025 | 
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ | 
| 63 |   | prssi 3780 | 
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆
ℝ) | 
| 64 | 61, 62, 63 | mp2an 426 | 
. . . . . . . . . . . . . . 15
⊢ {0, 1}
⊆ ℝ | 
| 65 | 2 | adantr 276 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝐹:ℕ⟶{0, 1}) | 
| 66 | 65 | ad2antrr 488 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶{0, 1}) | 
| 67 | 66, 56 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ {0, 1}) | 
| 68 | 64, 67 | sselid 3181 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ ℝ) | 
| 69 | 60, 68 | remulcld 8057 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) | 
| 70 | 51, 55, 56, 69 | fvmptd3 5655 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) | 
| 71 | 50, 70 | syldan 282 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → ((𝑗 ∈ ℕ ↦ ((1 /
(2↑𝑗)) · (𝐹‘𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) | 
| 72 | 50, 69 | syldan 282 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → ((1 /
(2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) | 
| 73 | 65 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐹:ℕ⟶{0, 1}) | 
| 74 | 73, 51 | trilpolemclim 15680 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))) ∈ dom ⇝ ) | 
| 75 |   | nnuz 9637 | 
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) | 
| 76 | 69 | recnd 8055 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℂ) | 
| 77 | 70, 76 | eqeltrd 2273 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))‘𝑖) ∈ ℂ) | 
| 78 | 75, 47, 77 | iserex 11504 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))) ∈ dom ⇝ )) | 
| 79 | 74, 78 | mpbid 147 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))) ∈ dom ⇝ ) | 
| 80 | 45, 48, 71, 72, 79 | isumrecl 11594 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) | 
| 81 |   | 1zzd 9353 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈
ℤ) | 
| 82 | 81, 23 | fzfigd 10523 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Fin) | 
| 83 | 82 | adantr 276 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...𝑛) ∈ Fin) | 
| 84 | 20 | a1i 9 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 2 ∈
ℝ+) | 
| 85 |   | elfzelz 10100 | 
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℤ) | 
| 86 | 85 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℤ) | 
| 87 | 84, 86 | rpexpcld 10789 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (2↑𝑖) ∈
ℝ+) | 
| 88 | 87 | rprecred 9783 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℝ) | 
| 89 | 83, 88 | fsumrecl 11566 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℝ) | 
| 90 | 50, 60 | syldan 282 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ) | 
| 91 | 50, 68 | syldan 282 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑖) ∈ ℝ) | 
| 92 | 59 | rpreccld 9782 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ+) | 
| 93 | 50, 92 | syldan 282 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ+) | 
| 94 | 93 | rpge0d 9775 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 0 ≤ (1 /
(2↑𝑖))) | 
| 95 |   | 0le0 9079 | 
. . . . . . . . . . . . . 14
⊢ 0 ≤
0 | 
| 96 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) ∧ (𝐹‘𝑖) = 0) → (𝐹‘𝑖) = 0) | 
| 97 | 95, 96 | breqtrrid 4071 | 
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) ∧ (𝐹‘𝑖) = 0) → 0 ≤ (𝐹‘𝑖)) | 
| 98 |   | 0le1 8508 | 
. . . . . . . . . . . . . 14
⊢ 0 ≤
1 | 
| 99 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) ∧ (𝐹‘𝑖) = 1) → (𝐹‘𝑖) = 1) | 
| 100 | 98, 99 | breqtrrid 4071 | 
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) ∧ (𝐹‘𝑖) = 1) → 0 ≤ (𝐹‘𝑖)) | 
| 101 | 73 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 𝐹:ℕ⟶{0, 1}) | 
| 102 | 101, 50 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑖) ∈ {0, 1}) | 
| 103 |   | elpri 3645 | 
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑖) ∈ {0, 1} → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) | 
| 104 | 102, 103 | syl 14 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) | 
| 105 | 97, 100, 104 | mpjaodan 799 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 0 ≤ (𝐹‘𝑖)) | 
| 106 | 90, 91, 94, 105 | mulge0d 8648 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 0 ≤ ((1 /
(2↑𝑖)) · (𝐹‘𝑖))) | 
| 107 | 45, 48, 71, 72, 79, 106 | isumge0 11595 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ≤ Σ𝑖 ∈
(ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖))) | 
| 108 | 44, 80, 89, 107 | leadd2dd 8587 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) | 
| 109 | 89 | recnd 8055 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℂ) | 
| 110 | 109 | addridd 8175 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖))) | 
| 111 | 110 | eqcomd 2202 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0)) | 
| 112 | 75, 45, 47, 70, 76, 74 | isumsplit 11656 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) | 
| 113 | 3, 112 | eqtrid 2241 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) | 
| 114 | 46 | nncnd 9004 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℂ) | 
| 115 |   | 1cnd 8042 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈
ℂ) | 
| 116 | 114, 115 | pncand 8338 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ((𝑛 + 1) − 1) = 𝑛) | 
| 117 | 116 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...((𝑛 + 1) − 1)) = (1...𝑛)) | 
| 118 |   | simpr 110 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ (1...𝑛)) | 
| 119 | 118 | fvresd 5583 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = (𝐹‘𝑖)) | 
| 120 |   | fveqeq2 5567 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑖 → (((𝐹 ↾ (1...𝑛))‘𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑖) = 1)) | 
| 121 |   | simplr 528 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) | 
| 122 | 120, 121,
118 | rspcdva 2873 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = 1) | 
| 123 | 119, 122 | eqtr3d 2231 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (𝐹‘𝑖) = 1) | 
| 124 | 123 | oveq2d 5938 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((1 / (2↑𝑖)) · 1)) | 
| 125 | 87 | rpreccld 9782 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈
ℝ+) | 
| 126 | 125 | rpcnd 9773 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℂ) | 
| 127 | 126 | mulridd 8043 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖))) | 
| 128 | 124, 127 | eqtrd 2229 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (1 / (2↑𝑖))) | 
| 129 | 117, 128 | sumeq12rdv 11538 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖))) | 
| 130 | 129 | oveq1d 5937 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖))) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) | 
| 131 | 113, 130 | eqtrd 2229 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) | 
| 132 | 108, 111,
131 | 3brtr4d 4065 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴) | 
| 133 |   | geo2sum 11679 | 
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 1 ∈
ℂ) → Σ𝑖
∈ (1...𝑛)(1 /
(2↑𝑖)) = (1 − (1
/ (2↑𝑛)))) | 
| 134 | 133 | breq1d 4043 | 
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 1 ∈
ℂ) → (Σ𝑖
∈ (1...𝑛)(1 /
(2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 /
(2↑𝑛))) ≤ 𝐴)) | 
| 135 | 46, 115, 134 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 / (2↑𝑛))) ≤ 𝐴)) | 
| 136 | 132, 135 | mpbid 147 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − (1 / (2↑𝑛))) ≤ 𝐴) | 
| 137 | 42, 41, 43, 136 | subled 8575 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ≤ (1 / (2↑𝑛))) | 
| 138 | 40, 41, 137 | lensymd 8148 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ¬ (1 / (2↑𝑛)) < (1 − 𝐴)) | 
| 139 | 39, 138 | pm2.21dd 621 | 
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) | 
| 140 | 139 | ex 115 | 
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0)) | 
| 141 |   | fveq1 5557 | 
. . . . . . 7
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (𝑓‘𝑥) = ((𝐹 ↾ (1...𝑛))‘𝑥)) | 
| 142 | 141 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓‘𝑥) = 0 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) | 
| 143 | 142 | rexbidv 2498 | 
. . . . 5
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ↔ ∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) | 
| 144 | 141 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓‘𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 1)) | 
| 145 | 144 | ralbidv 2497 | 
. . . . 5
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1 ↔ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)) | 
| 146 | 143, 145 | orbi12d 794 | 
. . . 4
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → ((∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1) ↔ (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1))) | 
| 147 |   | finomni 7206 | 
. . . . . 6
⊢
((1...𝑛) ∈ Fin
→ (1...𝑛) ∈
Omni) | 
| 148 | 82, 147 | syl 14 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Omni) | 
| 149 |   | isomninn 15675 | 
. . . . . 6
⊢
((1...𝑛) ∈ Omni
→ ((1...𝑛) ∈ Omni
↔ ∀𝑓 ∈
({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1))) | 
| 150 | 148, 149 | syl 14 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((1...𝑛) ∈ Omni ↔ ∀𝑓 ∈ ({0, 1}
↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1))) | 
| 151 | 148, 150 | mpbid 147 | 
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∀𝑓 ∈ ({0, 1} ↑𝑚
(1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1)) | 
| 152 |   | fz1ssnn 10131 | 
. . . . . . 7
⊢
(1...𝑛) ⊆
ℕ | 
| 153 | 152 | a1i 9 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ⊆ ℕ) | 
| 154 | 65, 153 | fssresd 5434 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1}) | 
| 155 |   | 0red 8027 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 0 ∈
ℝ) | 
| 156 |   | 1red 8041 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈
ℝ) | 
| 157 |   | prexg 4244 | 
. . . . . . 7
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ∈ V) | 
| 158 | 155, 156,
157 | syl2anc 411 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → {0, 1} ∈ V) | 
| 159 | 158, 82 | elmapd 6721 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚
(1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1})) | 
| 160 | 154, 159 | mpbird 167 | 
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚
(1...𝑛))) | 
| 161 | 146, 151,
160 | rspcdva 2873 | 
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)) | 
| 162 | 19, 140, 161 | mpjaod 719 | 
. 2
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) | 
| 163 | 10, 162 | rexlimddv 2619 | 
1
⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) |