Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemlt1 GIF version

Theorem trilpolemlt1 13409
Description: Lemma for trilpo 13411. The 𝐴 < 1 case. We can use the distance between 𝐴 and one (that is, 1 − 𝐴) to find a position in the sequence 𝑛 where terms after that point will not add up to as much as 1 − 𝐴. By finomni 7020 we know the terms up to 𝑛 either contain a zero or are all one. But if they are all one that contradicts the way we constructed 𝑛, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemlt1.a (𝜑𝐴 < 1)
Assertion
Ref Expression
trilpolemlt1 (𝜑 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
Distinct variable groups:   𝐴,𝑖,𝑥   𝑥,𝐹,𝑖   𝜑,𝑖,𝑥

Proof of Theorem trilpolemlt1
Dummy variables 𝑛 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 7805 . . . 4 (𝜑 → 1 ∈ ℝ)
2 trilpolemgt1.f . . . . 5 (𝜑𝐹:ℕ⟶{0, 1})
3 trilpolemgt1.a . . . . 5 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
42, 3trilpolemcl 13405 . . . 4 (𝜑𝐴 ∈ ℝ)
51, 4resubcld 8167 . . 3 (𝜑 → (1 − 𝐴) ∈ ℝ)
6 trilpolemlt1.a . . . 4 (𝜑𝐴 < 1)
74, 1posdifd 8318 . . . 4 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
86, 7mpbid 146 . . 3 (𝜑 → 0 < (1 − 𝐴))
9 nnrecl 8999 . . 3 (((1 − 𝐴) ∈ ℝ ∧ 0 < (1 − 𝐴)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (1 − 𝐴))
105, 8, 9syl2anc 409 . 2 (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < (1 − 𝐴))
11 elfznn 9865 . . . . . . 7 (𝑥 ∈ (1...𝑛) → 𝑥 ∈ ℕ)
1211ad2antrl 482 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ ℕ)
13 simprl 521 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ (1...𝑛))
1413fvresd 5454 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = (𝐹𝑥))
15 simprr 522 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)
1614, 15eqtr3d 2175 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝐹𝑥) = 0)
1712, 16jca 304 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝑥 ∈ ℕ ∧ (𝐹𝑥) = 0))
1817ex 114 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0) → (𝑥 ∈ ℕ ∧ (𝐹𝑥) = 0)))
1918reximdv2 2534 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0))
20 2rp 9475 . . . . . . . . . 10 2 ∈ ℝ+
2120a1i 9 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈ ℝ+)
22 simprl 521 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ)
2322nnzd 9196 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℤ)
2421, 23rpexpcld 10479 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (2↑𝑛) ∈ ℝ+)
2524rprecred 9525 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) ∈ ℝ)
2622nnrecred 8791 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) ∈ ℝ)
275adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 − 𝐴) ∈ ℝ)
28 2z 9106 . . . . . . . . . 10 2 ∈ ℤ
29 uzid 9364 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3028, 29mp1i 10 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈ (ℤ‘2))
3122nnnn0d 9054 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ0)
32 bernneq3 10445 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛))
3330, 31, 32syl2anc 409 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 < (2↑𝑛))
3422nnrpd 9511 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℝ+)
3534, 24ltrecd 9532 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝑛 < (2↑𝑛) ↔ (1 / (2↑𝑛)) < (1 / 𝑛)))
3633, 35mpbid 146 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 / 𝑛))
37 simprr 522 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) < (1 − 𝐴))
3825, 26, 27, 36, 37lttrd 7912 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 − 𝐴))
3938adantr 274 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) < (1 − 𝐴))
4027adantr 274 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ∈ ℝ)
4125adantr 274 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) ∈ ℝ)
42 1red 7805 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈ ℝ)
434ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 ∈ ℝ)
44 0red 7791 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ∈ ℝ)
45 eqid 2140 . . . . . . . . . . 11 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
4622adantr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℕ)
4746peano2nnd 8759 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℕ)
4847nnzd 9196 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℤ)
49 eluznn 9421 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 𝑖 ∈ ℕ)
5047, 49sylan 281 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 𝑖 ∈ ℕ)
51 eqid 2140 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗))) = (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))
52 oveq2 5790 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (2↑𝑗) = (2↑𝑖))
5352oveq2d 5798 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (1 / (2↑𝑗)) = (1 / (2↑𝑖)))
54 fveq2 5429 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5553, 54oveq12d 5800 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → ((1 / (2↑𝑗)) · (𝐹𝑗)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
56 simpr 109 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
5720a1i 9 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
5856nnzd 9196 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
5957, 58rpexpcld 10479 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
6059rprecred 9525 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
61 0re 7790 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
62 1re 7789 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
63 prssi 3686 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
6461, 62, 63mp2an 423 . . . . . . . . . . . . . . 15 {0, 1} ⊆ ℝ
652adantr 274 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝐹:ℕ⟶{0, 1})
6665ad2antrr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶{0, 1})
6766, 56ffvelrnd 5564 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
6864, 67sseldi 3100 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
6960, 68remulcld 7820 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
7051, 55, 56, 69fvmptd3 5522 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
7150, 70syldan 280 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
7250, 69syldan 280 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
7365adantr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐹:ℕ⟶{0, 1})
7473, 51trilpolemclim 13404 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ )
75 nnuz 9385 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
7669recnd 7818 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℂ)
7770, 76eqeltrd 2217 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))‘𝑖) ∈ ℂ)
7875, 47, 77iserex 11140 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ ))
7974, 78mpbid 146 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹𝑗)))) ∈ dom ⇝ )
8045, 48, 71, 72, 79isumrecl 11230 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
81 1zzd 9105 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈ ℤ)
8281, 23fzfigd 10235 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Fin)
8382adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...𝑛) ∈ Fin)
8420a1i 9 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 2 ∈ ℝ+)
85 elfzelz 9837 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℤ)
8685adantl 275 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℤ)
8784, 86rpexpcld 10479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (2↑𝑖) ∈ ℝ+)
8887rprecred 9525 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℝ)
8983, 88fsumrecl 11202 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℝ)
9050, 60syldan 280 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
9150, 68syldan 280 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑖) ∈ ℝ)
9259rpreccld 9524 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
9350, 92syldan 280 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
9493rpge0d 9517 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 0 ≤ (1 / (2↑𝑖)))
95 0le0 8833 . . . . . . . . . . . . . 14 0 ≤ 0
96 simpr 109 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
9795, 96breqtrrid 3974 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 0) → 0 ≤ (𝐹𝑖))
98 0le1 8267 . . . . . . . . . . . . . 14 0 ≤ 1
99 simpr 109 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
10098, 99breqtrrid 3974 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) ∧ (𝐹𝑖) = 1) → 0 ≤ (𝐹𝑖))
10173adantr 274 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 𝐹:ℕ⟶{0, 1})
102101, 50ffvelrnd 5564 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑖) ∈ {0, 1})
103 elpri 3555 . . . . . . . . . . . . . 14 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
104102, 103syl 14 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
10597, 100, 104mpjaodan 788 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 0 ≤ (𝐹𝑖))
10690, 91, 94, 105mulge0d 8407 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ‘(𝑛 + 1))) → 0 ≤ ((1 / (2↑𝑖)) · (𝐹𝑖)))
10745, 48, 71, 72, 79, 106isumge0 11231 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ≤ Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)))
10844, 80, 89, 107leadd2dd 8346 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
10989recnd 7818 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℂ)
110109addid1d 7935 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)))
111110eqcomd 2146 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0))
11275, 45, 47, 70, 76, 74isumsplit 11292 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
1133, 112syl5eq 2185 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
11446nncnd 8758 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℂ)
115 1cnd 7806 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈ ℂ)
116114, 115pncand 8098 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ((𝑛 + 1) − 1) = 𝑛)
117116oveq2d 5798 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...((𝑛 + 1) − 1)) = (1...𝑛))
118 simpr 109 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ (1...𝑛))
119118fvresd 5454 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = (𝐹𝑖))
120 fveqeq2 5438 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑖 → (((𝐹 ↾ (1...𝑛))‘𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑖) = 1))
121 simplr 520 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)
122120, 121, 118rspcdva 2798 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = 1)
123119, 122eqtr3d 2175 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (𝐹𝑖) = 1)
124123oveq2d 5798 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
12587rpreccld 9524 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℝ+)
126125rpcnd 9515 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℂ)
127126mulid1d 7807 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
128124, 127eqtrd 2173 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
129117, 128sumeq12rdv 11174 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)))
130129oveq1d 5797 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
131113, 130eqtrd 2173 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
132108, 111, 1313brtr4d 3968 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴)
133 geo2sum 11315 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) = (1 − (1 / (2↑𝑛))))
134133breq1d 3947 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 1 ∈ ℂ) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 / (2↑𝑛))) ≤ 𝐴))
13546, 115, 134syl2anc 409 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 / (2↑𝑛))) ≤ 𝐴))
136132, 135mpbid 146 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − (1 / (2↑𝑛))) ≤ 𝐴)
13742, 41, 43, 136subled 8334 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ≤ (1 / (2↑𝑛)))
13840, 41, 137lensymd 7908 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ¬ (1 / (2↑𝑛)) < (1 − 𝐴))
13939, 138pm2.21dd 610 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
140139ex 114 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0))
141 fveq1 5428 . . . . . . 7 (𝑓 = (𝐹 ↾ (1...𝑛)) → (𝑓𝑥) = ((𝐹 ↾ (1...𝑛))‘𝑥))
142141eqeq1d 2149 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓𝑥) = 0 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0))
143142rexbidv 2439 . . . . 5 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ↔ ∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0))
144141eqeq1d 2149 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 1))
145144ralbidv 2438 . . . . 5 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1 ↔ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1))
146143, 145orbi12d 783 . . . 4 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1) ↔ (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)))
147 finomni 7020 . . . . . 6 ((1...𝑛) ∈ Fin → (1...𝑛) ∈ Omni)
14882, 147syl 14 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Omni)
149 isomninn 13401 . . . . . 6 ((1...𝑛) ∈ Omni → ((1...𝑛) ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1)))
150148, 149syl 14 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((1...𝑛) ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1)))
151148, 150mpbid 146 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∀𝑓 ∈ ({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓𝑥) = 1))
152 fz1ssnn 9867 . . . . . . 7 (1...𝑛) ⊆ ℕ
153152a1i 9 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ⊆ ℕ)
15465, 153fssresd 5307 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1})
155 0red 7791 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 0 ∈ ℝ)
156 1red 7805 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈ ℝ)
157 prexg 4141 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ∈ V)
158155, 156, 157syl2anc 409 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → {0, 1} ∈ V)
159158, 82elmapd 6564 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚 (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1}))
160154, 159mpbird 166 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚 (1...𝑛)))
161146, 151, 160rspcdva 2798 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1))
16219, 140, 161mpjaod 708 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
16310, 162rexlimddv 2557 1 (𝜑 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wcel 1481  wral 2417  wrex 2418  Vcvv 2689  wss 3076  {cpr 3533   class class class wbr 3937  cmpt 3997  dom cdm 4547  cres 4549  wf 5127  cfv 5131  (class class class)co 5782  𝑚 cmap 6550  Fincfn 6642  Omnicomni 7012  cc 7642  cr 7643  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  cmin 7957   / cdiv 8456  cn 8744  2c2 8795  0cn0 9001  cz 9078  cuz 9350  +crp 9470  ...cfz 9821  seqcseq 10249  cexp 10323  cli 11079  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-2o 6322  df-oadd 6325  df-er 6437  df-map 6552  df-en 6643  df-dom 6644  df-fin 6645  df-omni 7014  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  trilpolemres  13410  neapmkvlem  13424
  Copyright terms: Public domain W3C validator