Step | Hyp | Ref
| Expression |
1 | | 1red 7914 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
2 | | trilpolemgt1.f |
. . . . 5
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
3 | | trilpolemgt1.a |
. . . . 5
⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) |
4 | 2, 3 | trilpolemcl 13916 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 1, 4 | resubcld 8279 |
. . 3
⊢ (𝜑 → (1 − 𝐴) ∈
ℝ) |
6 | | trilpolemlt1.a |
. . . 4
⊢ (𝜑 → 𝐴 < 1) |
7 | 4, 1 | posdifd 8430 |
. . . 4
⊢ (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴))) |
8 | 6, 7 | mpbid 146 |
. . 3
⊢ (𝜑 → 0 < (1 − 𝐴)) |
9 | | nnrecl 9112 |
. . 3
⊢ (((1
− 𝐴) ∈ ℝ
∧ 0 < (1 − 𝐴))
→ ∃𝑛 ∈
ℕ (1 / 𝑛) < (1
− 𝐴)) |
10 | 5, 8, 9 | syl2anc 409 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < (1 − 𝐴)) |
11 | | elfznn 9989 |
. . . . . . 7
⊢ (𝑥 ∈ (1...𝑛) → 𝑥 ∈ ℕ) |
12 | 11 | ad2antrl 482 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ ℕ) |
13 | | simprl 521 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → 𝑥 ∈ (1...𝑛)) |
14 | 13 | fvresd 5511 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = (𝐹‘𝑥)) |
15 | | simprr 522 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → ((𝐹 ↾ (1...𝑛))‘𝑥) = 0) |
16 | 14, 15 | eqtr3d 2200 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝐹‘𝑥) = 0) |
17 | 12, 16 | jca 304 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ (𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) → (𝑥 ∈ ℕ ∧ (𝐹‘𝑥) = 0)) |
18 | 17 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝑥 ∈ (1...𝑛) ∧ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0) → (𝑥 ∈ ℕ ∧ (𝐹‘𝑥) = 0))) |
19 | 18 | reximdv2 2565 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0)) |
20 | | 2rp 9594 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ+ |
21 | 20 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈
ℝ+) |
22 | | simprl 521 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ) |
23 | 22 | nnzd 9312 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℤ) |
24 | 21, 23 | rpexpcld 10612 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (2↑𝑛) ∈
ℝ+) |
25 | 24 | rprecred 9644 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) ∈ ℝ) |
26 | 22 | nnrecred 8904 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) ∈ ℝ) |
27 | 5 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 − 𝐴) ∈ ℝ) |
28 | | 2z 9219 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
29 | | uzid 9480 |
. . . . . . . . . 10
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
30 | 28, 29 | mp1i 10 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 2 ∈
(ℤ≥‘2)) |
31 | 22 | nnnn0d 9167 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℕ0) |
32 | | bernneq3 10577 |
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛)) |
33 | 30, 31, 32 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 < (2↑𝑛)) |
34 | 22 | nnrpd 9630 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝑛 ∈ ℝ+) |
35 | 34, 24 | ltrecd 9651 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝑛 < (2↑𝑛) ↔ (1 / (2↑𝑛)) < (1 / 𝑛))) |
36 | 33, 35 | mpbid 146 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 / 𝑛)) |
37 | | simprr 522 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / 𝑛) < (1 − 𝐴)) |
38 | 25, 26, 27, 36, 37 | lttrd 8024 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1 / (2↑𝑛)) < (1 − 𝐴)) |
39 | 38 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) < (1 − 𝐴)) |
40 | 27 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ∈ ℝ) |
41 | 25 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 / (2↑𝑛)) ∈ ℝ) |
42 | | 1red 7914 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈
ℝ) |
43 | 4 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 ∈ ℝ) |
44 | | 0red 7900 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ∈
ℝ) |
45 | | eqid 2165 |
. . . . . . . . . . 11
⊢
(ℤ≥‘(𝑛 + 1)) = (ℤ≥‘(𝑛 + 1)) |
46 | 22 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℕ) |
47 | 46 | peano2nnd 8872 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℕ) |
48 | 47 | nnzd 9312 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (𝑛 + 1) ∈ ℤ) |
49 | | eluznn 9538 |
. . . . . . . . . . . . 13
⊢ (((𝑛 + 1) ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑖 ∈ ℕ) |
50 | 47, 49 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑖 ∈
ℕ) |
51 | | eqid 2165 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ ↦ ((1 /
(2↑𝑗)) · (𝐹‘𝑗))) = (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗))) |
52 | | oveq2 5850 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (2↑𝑗) = (2↑𝑖)) |
53 | 52 | oveq2d 5858 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → (1 / (2↑𝑗)) = (1 / (2↑𝑖))) |
54 | | fveq2 5486 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → (𝐹‘𝑗) = (𝐹‘𝑖)) |
55 | 53, 54 | oveq12d 5860 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → ((1 / (2↑𝑗)) · (𝐹‘𝑗)) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
56 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
57 | 20 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 2 ∈
ℝ+) |
58 | 56 | nnzd 9312 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
59 | 57, 58 | rpexpcld 10612 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈
ℝ+) |
60 | 59 | rprecred 9644 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ) |
61 | | 0re 7899 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ |
62 | | 1re 7898 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
63 | | prssi 3731 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆
ℝ) |
64 | 61, 62, 63 | mp2an 423 |
. . . . . . . . . . . . . . 15
⊢ {0, 1}
⊆ ℝ |
65 | 2 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 𝐹:ℕ⟶{0, 1}) |
66 | 65 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶{0, 1}) |
67 | 66, 56 | ffvelrnd 5621 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ {0, 1}) |
68 | 64, 67 | sselid 3140 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ ℝ) |
69 | 60, 68 | remulcld 7929 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
70 | 51, 55, 56, 69 | fvmptd3 5579 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
71 | 50, 70 | syldan 280 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → ((𝑗 ∈ ℕ ↦ ((1 /
(2↑𝑗)) · (𝐹‘𝑗)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
72 | 50, 69 | syldan 280 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → ((1 /
(2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
73 | 65 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐹:ℕ⟶{0, 1}) |
74 | 73, 51 | trilpolemclim 13915 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))) ∈ dom ⇝ ) |
75 | | nnuz 9501 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
76 | 69 | recnd 7927 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℂ) |
77 | 70, 76 | eqeltrd 2243 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))‘𝑖) ∈ ℂ) |
78 | 75, 47, 77 | iserex 11280 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (seq1( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))) ∈ dom ⇝ )) |
79 | 74, 78 | mpbid 146 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → seq(𝑛 + 1)( + , (𝑗 ∈ ℕ ↦ ((1 / (2↑𝑗)) · (𝐹‘𝑗)))) ∈ dom ⇝ ) |
80 | 45, 48, 71, 72, 79 | isumrecl 11370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
81 | | 1zzd 9218 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈
ℤ) |
82 | 81, 23 | fzfigd 10366 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Fin) |
83 | 82 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...𝑛) ∈ Fin) |
84 | 20 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 2 ∈
ℝ+) |
85 | | elfzelz 9960 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℤ) |
86 | 85 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℤ) |
87 | 84, 86 | rpexpcld 10612 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (2↑𝑖) ∈
ℝ+) |
88 | 87 | rprecred 9644 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℝ) |
89 | 83, 88 | fsumrecl 11342 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℝ) |
90 | 50, 60 | syldan 280 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ) |
91 | 50, 68 | syldan 280 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑖) ∈ ℝ) |
92 | 59 | rpreccld 9643 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ+) |
93 | 50, 92 | syldan 280 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ+) |
94 | 93 | rpge0d 9636 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 0 ≤ (1 /
(2↑𝑖))) |
95 | | 0le0 8946 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
0 |
96 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) ∧ (𝐹‘𝑖) = 0) → (𝐹‘𝑖) = 0) |
97 | 95, 96 | breqtrrid 4020 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) ∧ (𝐹‘𝑖) = 0) → 0 ≤ (𝐹‘𝑖)) |
98 | | 0le1 8379 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
1 |
99 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) ∧ (𝐹‘𝑖) = 1) → (𝐹‘𝑖) = 1) |
100 | 98, 99 | breqtrrid 4020 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) ∧ (𝐹‘𝑖) = 1) → 0 ≤ (𝐹‘𝑖)) |
101 | 73 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 𝐹:ℕ⟶{0, 1}) |
102 | 101, 50 | ffvelrnd 5621 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑖) ∈ {0, 1}) |
103 | | elpri 3599 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑖) ∈ {0, 1} → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) |
104 | 102, 103 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) |
105 | 97, 100, 104 | mpjaodan 788 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 0 ≤ (𝐹‘𝑖)) |
106 | 90, 91, 94, 105 | mulge0d 8519 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (ℤ≥‘(𝑛 + 1))) → 0 ≤ ((1 /
(2↑𝑖)) · (𝐹‘𝑖))) |
107 | 45, 48, 71, 72, 79, 106 | isumge0 11371 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 0 ≤ Σ𝑖 ∈
(ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
108 | 44, 80, 89, 107 | leadd2dd 8458 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) |
109 | 89 | recnd 7927 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ∈ ℂ) |
110 | 109 | addid1d 8047 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖))) |
111 | 110 | eqcomd 2171 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + 0)) |
112 | 75, 45, 47, 70, 76, 74 | isumsplit 11432 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) |
113 | 3, 112 | syl5eq 2211 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) |
114 | 46 | nncnd 8871 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝑛 ∈ ℂ) |
115 | | 1cnd 7915 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 1 ∈
ℂ) |
116 | 114, 115 | pncand 8210 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ((𝑛 + 1) − 1) = 𝑛) |
117 | 116 | oveq2d 5858 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1...((𝑛 + 1) − 1)) = (1...𝑛)) |
118 | | simpr 109 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ (1...𝑛)) |
119 | 118 | fvresd 5511 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = (𝐹‘𝑖)) |
120 | | fveqeq2 5495 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑖 → (((𝐹 ↾ (1...𝑛))‘𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑖) = 1)) |
121 | | simplr 520 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) |
122 | 120, 121,
118 | rspcdva 2835 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((𝐹 ↾ (1...𝑛))‘𝑖) = 1) |
123 | 119, 122 | eqtr3d 2200 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (𝐹‘𝑖) = 1) |
124 | 123 | oveq2d 5858 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((1 / (2↑𝑖)) · 1)) |
125 | 87 | rpreccld 9643 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈
ℝ+) |
126 | 125 | rpcnd 9634 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → (1 / (2↑𝑖)) ∈ ℂ) |
127 | 126 | mulid1d 7916 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖))) |
128 | 124, 127 | eqtrd 2198 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) ∧ 𝑖 ∈ (1...𝑛)) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (1 / (2↑𝑖))) |
129 | 117, 128 | sumeq12rdv 11314 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) = Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖))) |
130 | 129 | oveq1d 5857 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖))) = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) |
131 | 113, 130 | eqtrd 2198 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → 𝐴 = (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑛 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) |
132 | 108, 111,
131 | 3brtr4d 4014 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴) |
133 | | geo2sum 11455 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 1 ∈
ℂ) → Σ𝑖
∈ (1...𝑛)(1 /
(2↑𝑖)) = (1 − (1
/ (2↑𝑛)))) |
134 | 133 | breq1d 3992 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 1 ∈
ℂ) → (Σ𝑖
∈ (1...𝑛)(1 /
(2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 /
(2↑𝑛))) ≤ 𝐴)) |
135 | 46, 115, 134 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (Σ𝑖 ∈ (1...𝑛)(1 / (2↑𝑖)) ≤ 𝐴 ↔ (1 − (1 / (2↑𝑛))) ≤ 𝐴)) |
136 | 132, 135 | mpbid 146 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − (1 / (2↑𝑛))) ≤ 𝐴) |
137 | 42, 41, 43, 136 | subled 8446 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → (1 − 𝐴) ≤ (1 / (2↑𝑛))) |
138 | 40, 41, 137 | lensymd 8020 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ¬ (1 / (2↑𝑛)) < (1 − 𝐴)) |
139 | 39, 138 | pm2.21dd 610 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) ∧ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1) → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) |
140 | 139 | ex 114 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0)) |
141 | | fveq1 5485 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (𝑓‘𝑥) = ((𝐹 ↾ (1...𝑛))‘𝑥)) |
142 | 141 | eqeq1d 2174 |
. . . . . 6
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓‘𝑥) = 0 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) |
143 | 142 | rexbidv 2467 |
. . . . 5
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ↔ ∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0)) |
144 | 141 | eqeq1d 2174 |
. . . . . 6
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑓‘𝑥) = 1 ↔ ((𝐹 ↾ (1...𝑛))‘𝑥) = 1)) |
145 | 144 | ralbidv 2466 |
. . . . 5
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1 ↔ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)) |
146 | 143, 145 | orbi12d 783 |
. . . 4
⊢ (𝑓 = (𝐹 ↾ (1...𝑛)) → ((∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1) ↔ (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1))) |
147 | | finomni 7104 |
. . . . . 6
⊢
((1...𝑛) ∈ Fin
→ (1...𝑛) ∈
Omni) |
148 | 82, 147 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ∈ Omni) |
149 | | isomninn 13910 |
. . . . . 6
⊢
((1...𝑛) ∈ Omni
→ ((1...𝑛) ∈ Omni
↔ ∀𝑓 ∈
({0, 1} ↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1))) |
150 | 148, 149 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((1...𝑛) ∈ Omni ↔ ∀𝑓 ∈ ({0, 1}
↑𝑚 (1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1))) |
151 | 148, 150 | mpbid 146 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∀𝑓 ∈ ({0, 1} ↑𝑚
(1...𝑛))(∃𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)(𝑓‘𝑥) = 1)) |
152 | | fz1ssnn 9991 |
. . . . . . 7
⊢
(1...𝑛) ⊆
ℕ |
153 | 152 | a1i 9 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (1...𝑛) ⊆ ℕ) |
154 | 65, 153 | fssresd 5364 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1}) |
155 | | 0red 7900 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 0 ∈
ℝ) |
156 | | 1red 7914 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → 1 ∈
ℝ) |
157 | | prexg 4189 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ∈ V) |
158 | 155, 156,
157 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → {0, 1} ∈ V) |
159 | 158, 82 | elmapd 6628 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ((𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚
(1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶{0, 1})) |
160 | 154, 159 | mpbird 166 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (𝐹 ↾ (1...𝑛)) ∈ ({0, 1} ↑𝑚
(1...𝑛))) |
161 | 146, 151,
160 | rspcdva 2835 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → (∃𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 0 ∨ ∀𝑥 ∈ (1...𝑛)((𝐹 ↾ (1...𝑛))‘𝑥) = 1)) |
162 | 19, 140, 161 | mpjaod 708 |
. 2
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (1 − 𝐴))) → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) |
163 | 10, 162 | rexlimddv 2588 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) |