ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1lem GIF version

Theorem mulextsr1lem 7742
Description: Lemma for mulextsr1 7743. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
mulextsr1lem (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))

Proof of Theorem mulextsr1lem
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcomprg 7540 . . . . . . 7 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
21adantl 275 . . . . . 6 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
3 addclpr 7499 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
43adantl 275 . . . . . . 7 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
5 simp2l 1018 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑍P)
6 simp3r 1021 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑉P)
7 mulclpr 7534 . . . . . . . 8 ((𝑍P𝑉P) → (𝑍 ·P 𝑉) ∈ P)
85, 6, 7syl2anc 409 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 ·P 𝑉) ∈ P)
9 simp1r 1017 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑌P)
10 mulclpr 7534 . . . . . . . 8 ((𝑌P𝑉P) → (𝑌 ·P 𝑉) ∈ P)
119, 6, 10syl2anc 409 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑌 ·P 𝑉) ∈ P)
124, 8, 11caovcld 6006 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)) ∈ P)
13 simp1l 1016 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑋P)
14 simp3l 1020 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑈P)
15 mulclpr 7534 . . . . . . . 8 ((𝑋P𝑈P) → (𝑋 ·P 𝑈) ∈ P)
1613, 14, 15syl2anc 409 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 ·P 𝑈) ∈ P)
17 simp2r 1019 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑊P)
18 mulclpr 7534 . . . . . . . 8 ((𝑊P𝑈P) → (𝑊 ·P 𝑈) ∈ P)
1917, 14, 18syl2anc 409 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑊 ·P 𝑈) ∈ P)
204, 16, 19caovcld 6006 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)) ∈ P)
212, 12, 20caovcomd 6009 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)) +P ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈))) = (((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)) +P ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉))))
22 addassprg 7541 . . . . . . 7 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
2322adantl 275 . . . . . 6 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
2416, 11, 8, 2, 23, 19, 4caov411d 6038 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈))) = (((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)) +P ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈))))
25 distrprg 7550 . . . . . . . 8 ((𝑓P𝑔PP) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
2625adantl 275 . . . . . . 7 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔PP)) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
27 mulcomprg 7542 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
2827adantl 275 . . . . . . 7 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
2926, 13, 17, 14, 4, 28caovdir2d 6029 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑈) = ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)))
3026, 5, 9, 6, 4, 28caovdir2d 6029 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑉) = ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)))
3129, 30oveq12d 5871 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉)) = (((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)) +P ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉))))
3221, 24, 313eqtr4d 2213 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈))) = (((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉)))
33 mulclpr 7534 . . . . . . 7 ((𝑋P𝑉P) → (𝑋 ·P 𝑉) ∈ P)
3413, 6, 33syl2anc 409 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 ·P 𝑉) ∈ P)
35 mulclpr 7534 . . . . . . 7 ((𝑌P𝑈P) → (𝑌 ·P 𝑈) ∈ P)
369, 14, 35syl2anc 409 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑌 ·P 𝑈) ∈ P)
37 mulclpr 7534 . . . . . . 7 ((𝑍P𝑈P) → (𝑍 ·P 𝑈) ∈ P)
385, 14, 37syl2anc 409 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 ·P 𝑈) ∈ P)
39 mulclpr 7534 . . . . . . 7 ((𝑊P𝑉P) → (𝑊 ·P 𝑉) ∈ P)
4017, 6, 39syl2anc 409 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑊 ·P 𝑉) ∈ P)
4134, 36, 38, 2, 23, 40, 4caov411d 6038 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) = (((𝑍 ·P 𝑈) +P (𝑌 ·P 𝑈)) +P ((𝑋 ·P 𝑉) +P (𝑊 ·P 𝑉))))
4226, 5, 9, 14, 4, 28caovdir2d 6029 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑈) = ((𝑍 ·P 𝑈) +P (𝑌 ·P 𝑈)))
4326, 13, 17, 6, 4, 28caovdir2d 6029 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑉) = ((𝑋 ·P 𝑉) +P (𝑊 ·P 𝑉)))
4442, 43oveq12d 5871 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) = (((𝑍 ·P 𝑈) +P (𝑌 ·P 𝑈)) +P ((𝑋 ·P 𝑉) +P (𝑊 ·P 𝑉))))
4541, 44eqtr4d 2206 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) = (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)))
4632, 45breq12d 4002 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) ↔ (((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉))))
4729, 20eqeltrd 2247 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑈) ∈ P)
4830, 12eqeltrd 2247 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑉) ∈ P)
49 addclpr 7499 . . . . . . 7 ((𝑍P𝑌P) → (𝑍 +P 𝑌) ∈ P)
505, 9, 49syl2anc 409 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 +P 𝑌) ∈ P)
51 mulclpr 7534 . . . . . 6 (((𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑍 +P 𝑌) ·P 𝑈) ∈ P)
5250, 14, 51syl2anc 409 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑈) ∈ P)
53 addclpr 7499 . . . . . . 7 ((𝑋P𝑊P) → (𝑋 +P 𝑊) ∈ P)
5413, 17, 53syl2anc 409 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 +P 𝑊) ∈ P)
55 mulclpr 7534 . . . . . 6 (((𝑋 +P 𝑊) ∈ P𝑉P) → ((𝑋 +P 𝑊) ·P 𝑉) ∈ P)
5654, 6, 55syl2anc 409 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑉) ∈ P)
57 addextpr 7583 . . . . 5 (((((𝑋 +P 𝑊) ·P 𝑈) ∈ P ∧ ((𝑍 +P 𝑌) ·P 𝑉) ∈ P) ∧ (((𝑍 +P 𝑌) ·P 𝑈) ∈ P ∧ ((𝑋 +P 𝑊) ·P 𝑉) ∈ P)) → ((((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ∨ ((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉))))
5847, 48, 52, 56, 57syl22anc 1234 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ∨ ((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉))))
59 mulcomprg 7542 . . . . . . . . 9 (((𝑋 +P 𝑊) ∈ P𝑈P) → ((𝑋 +P 𝑊) ·P 𝑈) = (𝑈 ·P (𝑋 +P 𝑊)))
60593adant2 1011 . . . . . . . 8 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑋 +P 𝑊) ·P 𝑈) = (𝑈 ·P (𝑋 +P 𝑊)))
61 mulcomprg 7542 . . . . . . . . 9 (((𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑍 +P 𝑌) ·P 𝑈) = (𝑈 ·P (𝑍 +P 𝑌)))
62613adant1 1010 . . . . . . . 8 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑍 +P 𝑌) ·P 𝑈) = (𝑈 ·P (𝑍 +P 𝑌)))
6360, 62breq12d 4002 . . . . . . 7 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ↔ (𝑈 ·P (𝑋 +P 𝑊))<P (𝑈 ·P (𝑍 +P 𝑌))))
64 ltmprr 7604 . . . . . . 7 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑈 ·P (𝑋 +P 𝑊))<P (𝑈 ·P (𝑍 +P 𝑌)) → (𝑋 +P 𝑊)<P (𝑍 +P 𝑌)))
6563, 64sylbid 149 . . . . . 6 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) → (𝑋 +P 𝑊)<P (𝑍 +P 𝑌)))
6654, 50, 14, 65syl3anc 1233 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) → (𝑋 +P 𝑊)<P (𝑍 +P 𝑌)))
67 mulcomprg 7542 . . . . . . . 8 (((𝑍 +P 𝑌) ∈ P𝑉P) → ((𝑍 +P 𝑌) ·P 𝑉) = (𝑉 ·P (𝑍 +P 𝑌)))
6850, 6, 67syl2anc 409 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑉) = (𝑉 ·P (𝑍 +P 𝑌)))
69 mulcomprg 7542 . . . . . . . 8 (((𝑋 +P 𝑊) ∈ P𝑉P) → ((𝑋 +P 𝑊) ·P 𝑉) = (𝑉 ·P (𝑋 +P 𝑊)))
7054, 6, 69syl2anc 409 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑉) = (𝑉 ·P (𝑋 +P 𝑊)))
7168, 70breq12d 4002 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉) ↔ (𝑉 ·P (𝑍 +P 𝑌))<P (𝑉 ·P (𝑋 +P 𝑊))))
72 ltmprr 7604 . . . . . . 7 (((𝑍 +P 𝑌) ∈ P ∧ (𝑋 +P 𝑊) ∈ P𝑉P) → ((𝑉 ·P (𝑍 +P 𝑌))<P (𝑉 ·P (𝑋 +P 𝑊)) → (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)))
7350, 54, 6, 72syl3anc 1233 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑉 ·P (𝑍 +P 𝑌))<P (𝑉 ·P (𝑋 +P 𝑊)) → (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)))
7471, 73sylbid 149 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉) → (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)))
7566, 74orim12d 781 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ∨ ((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉)) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊))))
7658, 75syld 45 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊))))
7746, 76sylbid 149 . 2 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊))))
78 addcomprg 7540 . . . . 5 ((𝑍P𝑌P) → (𝑍 +P 𝑌) = (𝑌 +P 𝑍))
795, 9, 78syl2anc 409 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 +P 𝑌) = (𝑌 +P 𝑍))
8079breq2d 4001 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ↔ (𝑋 +P 𝑊)<P (𝑌 +P 𝑍)))
81 addcomprg 7540 . . . . 5 ((𝑋P𝑊P) → (𝑋 +P 𝑊) = (𝑊 +P 𝑋))
8213, 17, 81syl2anc 409 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 +P 𝑊) = (𝑊 +P 𝑋))
8382breq2d 4001 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌)<P (𝑋 +P 𝑊) ↔ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋)))
8480, 83orbi12d 788 . 2 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)) ↔ ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
8577, 84sylibd 148 1 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  Pcnp 7253   +P cpp 7255   ·P cmp 7256  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-iltp 7432
This theorem is referenced by:  mulextsr1  7743
  Copyright terms: Public domain W3C validator