ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumgcl GIF version

Theorem fsumgcl 11327
Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
fsum.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fsum.2 (𝜑𝑀 ∈ ℕ)
fsum.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsum.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fsumgcl (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fsumgcl
StepHypRef Expression
1 fsum.5 . . 3 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
2 fsum.3 . . . . . . 7 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
3 f1of 5432 . . . . . . 7 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
42, 3syl 14 . . . . . 6 (𝜑𝐹:(1...𝑀)⟶𝐴)
54ffvelrnda 5620 . . . . 5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) ∈ 𝐴)
6 fsum.1 . . . . . 6 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
76adantl 275 . . . . 5 (((𝜑𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹𝑛)) → 𝐵 = 𝐶)
85, 7csbied 3091 . . . 4 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 = 𝐶)
9 fsum.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
109ralrimiva 2539 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
1110adantr 274 . . . . 5 ((𝜑𝑛 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
12 nfcsb1v 3078 . . . . . . 7 𝑘(𝐹𝑛) / 𝑘𝐵
1312nfel1 2319 . . . . . 6 𝑘(𝐹𝑛) / 𝑘𝐵 ∈ ℂ
14 csbeq1a 3054 . . . . . . 7 (𝑘 = (𝐹𝑛) → 𝐵 = (𝐹𝑛) / 𝑘𝐵)
1514eleq1d 2235 . . . . . 6 (𝑘 = (𝐹𝑛) → (𝐵 ∈ ℂ ↔ (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
1613, 15rspc 2824 . . . . 5 ((𝐹𝑛) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
175, 11, 16sylc 62 . . . 4 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ)
188, 17eqeltrrd 2244 . . 3 ((𝜑𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ)
191, 18eqeltrd 2243 . 2 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) ∈ ℂ)
2019ralrimiva 2539 1 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  csb 3045  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cc 7751  1c1 7754  cn 8857  ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-f1o 5195  df-fv 5196
This theorem is referenced by:  fsum3  11328  fprodseq  11524
  Copyright terms: Public domain W3C validator