ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumgcl GIF version

Theorem fsumgcl 11892
Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
fsum.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fsum.2 (𝜑𝑀 ∈ ℕ)
fsum.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsum.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fsumgcl (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fsumgcl
StepHypRef Expression
1 fsum.5 . . 3 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
2 fsum.3 . . . . . . 7 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
3 f1of 5571 . . . . . . 7 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
42, 3syl 14 . . . . . 6 (𝜑𝐹:(1...𝑀)⟶𝐴)
54ffvelcdmda 5769 . . . . 5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) ∈ 𝐴)
6 fsum.1 . . . . . 6 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
76adantl 277 . . . . 5 (((𝜑𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹𝑛)) → 𝐵 = 𝐶)
85, 7csbied 3171 . . . 4 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 = 𝐶)
9 fsum.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
109ralrimiva 2603 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
1110adantr 276 . . . . 5 ((𝜑𝑛 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
12 nfcsb1v 3157 . . . . . . 7 𝑘(𝐹𝑛) / 𝑘𝐵
1312nfel1 2383 . . . . . 6 𝑘(𝐹𝑛) / 𝑘𝐵 ∈ ℂ
14 csbeq1a 3133 . . . . . . 7 (𝑘 = (𝐹𝑛) → 𝐵 = (𝐹𝑛) / 𝑘𝐵)
1514eleq1d 2298 . . . . . 6 (𝑘 = (𝐹𝑛) → (𝐵 ∈ ℂ ↔ (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
1613, 15rspc 2901 . . . . 5 ((𝐹𝑛) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
175, 11, 16sylc 62 . . . 4 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ)
188, 17eqeltrrd 2307 . . 3 ((𝜑𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ)
191, 18eqeltrd 2306 . 2 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) ∈ ℂ)
2019ralrimiva 2603 1 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  csb 3124  wf 5313  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  cc 7993  1c1 7996  cn 9106  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-f1o 5324  df-fv 5325
This theorem is referenced by:  fsum3  11893  fprodseq  12089
  Copyright terms: Public domain W3C validator