| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fsumgcl | GIF version | ||
| Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| fsum.1 | ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) | 
| fsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| fsum.3 | ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) | 
| fsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| fsum.5 | ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) | 
| Ref | Expression | 
|---|---|
| fsumgcl | ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fsum.5 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) | |
| 2 | fsum.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) | |
| 3 | f1of 5504 | . . . . . . 7 ⊢ (𝐹:(1...𝑀)–1-1-onto→𝐴 → 𝐹:(1...𝑀)⟶𝐴) | |
| 4 | 2, 3 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝐴) | 
| 5 | 4 | ffvelcdmda 5697 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐹‘𝑛) ∈ 𝐴) | 
| 6 | fsum.1 | . . . . . 6 ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) | |
| 7 | 6 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹‘𝑛)) → 𝐵 = 𝐶) | 
| 8 | 5, 7 | csbied 3131 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐶) | 
| 9 | fsum.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 10 | 9 | ralrimiva 2570 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 12 | nfcsb1v 3117 | . . . . . . 7 ⊢ Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 | |
| 13 | 12 | nfel1 2350 | . . . . . 6 ⊢ Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ | 
| 14 | csbeq1a 3093 | . . . . . . 7 ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) | |
| 15 | 14 | eleq1d 2265 | . . . . . 6 ⊢ (𝑘 = (𝐹‘𝑛) → (𝐵 ∈ ℂ ↔ ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 16 | 13, 15 | rspc 2862 | . . . . 5 ⊢ ((𝐹‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 17 | 5, 11, 16 | sylc 62 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ) | 
| 18 | 8, 17 | eqeltrrd 2274 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ) | 
| 19 | 1, 18 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) ∈ ℂ) | 
| 20 | 19 | ralrimiva 2570 | 1 ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⦋csb 3084 ⟶wf 5254 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 1c1 7880 ℕcn 8990 ...cfz 10083 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-f1o 5265 df-fv 5266 | 
| This theorem is referenced by: fsum3 11552 fprodseq 11748 | 
| Copyright terms: Public domain | W3C validator |