| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumgcl | GIF version | ||
| Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.) |
| Ref | Expression |
|---|---|
| fsum.1 | ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) |
| fsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| fsum.3 | ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) |
| fsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fsum.5 | ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) |
| Ref | Expression |
|---|---|
| fsumgcl | ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum.5 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) | |
| 2 | fsum.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) | |
| 3 | f1of 5571 | . . . . . . 7 ⊢ (𝐹:(1...𝑀)–1-1-onto→𝐴 → 𝐹:(1...𝑀)⟶𝐴) | |
| 4 | 2, 3 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝐴) |
| 5 | 4 | ffvelcdmda 5769 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐹‘𝑛) ∈ 𝐴) |
| 6 | fsum.1 | . . . . . 6 ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) | |
| 7 | 6 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹‘𝑛)) → 𝐵 = 𝐶) |
| 8 | 5, 7 | csbied 3171 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐶) |
| 9 | fsum.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 10 | 9 | ralrimiva 2603 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 12 | nfcsb1v 3157 | . . . . . . 7 ⊢ Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 | |
| 13 | 12 | nfel1 2383 | . . . . . 6 ⊢ Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ |
| 14 | csbeq1a 3133 | . . . . . . 7 ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) | |
| 15 | 14 | eleq1d 2298 | . . . . . 6 ⊢ (𝑘 = (𝐹‘𝑛) → (𝐵 ∈ ℂ ↔ ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) |
| 16 | 13, 15 | rspc 2901 | . . . . 5 ⊢ ((𝐹‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) |
| 17 | 5, 11, 16 | sylc 62 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ) |
| 18 | 8, 17 | eqeltrrd 2307 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ) |
| 19 | 1, 18 | eqeltrd 2306 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) ∈ ℂ) |
| 20 | 19 | ralrimiva 2603 | 1 ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⦋csb 3124 ⟶wf 5313 –1-1-onto→wf1o 5316 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 1c1 7996 ℕcn 9106 ...cfz 10200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-f1o 5324 df-fv 5325 |
| This theorem is referenced by: fsum3 11893 fprodseq 12089 |
| Copyright terms: Public domain | W3C validator |