| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumgcl | GIF version | ||
| Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.) |
| Ref | Expression |
|---|---|
| fsum.1 | ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) |
| fsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| fsum.3 | ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) |
| fsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fsum.5 | ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) |
| Ref | Expression |
|---|---|
| fsumgcl | ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum.5 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) | |
| 2 | fsum.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) | |
| 3 | f1of 5507 | . . . . . . 7 ⊢ (𝐹:(1...𝑀)–1-1-onto→𝐴 → 𝐹:(1...𝑀)⟶𝐴) | |
| 4 | 2, 3 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝐴) |
| 5 | 4 | ffvelcdmda 5700 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐹‘𝑛) ∈ 𝐴) |
| 6 | fsum.1 | . . . . . 6 ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) | |
| 7 | 6 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹‘𝑛)) → 𝐵 = 𝐶) |
| 8 | 5, 7 | csbied 3131 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐶) |
| 9 | fsum.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 10 | 9 | ralrimiva 2570 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 12 | nfcsb1v 3117 | . . . . . . 7 ⊢ Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 | |
| 13 | 12 | nfel1 2350 | . . . . . 6 ⊢ Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ |
| 14 | csbeq1a 3093 | . . . . . . 7 ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) | |
| 15 | 14 | eleq1d 2265 | . . . . . 6 ⊢ (𝑘 = (𝐹‘𝑛) → (𝐵 ∈ ℂ ↔ ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) |
| 16 | 13, 15 | rspc 2862 | . . . . 5 ⊢ ((𝐹‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) |
| 17 | 5, 11, 16 | sylc 62 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ) |
| 18 | 8, 17 | eqeltrrd 2274 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ) |
| 19 | 1, 18 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) ∈ ℂ) |
| 20 | 19 | ralrimiva 2570 | 1 ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⦋csb 3084 ⟶wf 5255 –1-1-onto→wf1o 5258 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 1c1 7897 ℕcn 9007 ...cfz 10100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-f1o 5266 df-fv 5267 |
| This theorem is referenced by: fsum3 11569 fprodseq 11765 |
| Copyright terms: Public domain | W3C validator |