ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumgcl GIF version

Theorem fsumgcl 11396
Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
fsum.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fsum.2 (𝜑𝑀 ∈ ℕ)
fsum.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsum.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fsumgcl (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fsumgcl
StepHypRef Expression
1 fsum.5 . . 3 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
2 fsum.3 . . . . . . 7 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
3 f1of 5463 . . . . . . 7 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
42, 3syl 14 . . . . . 6 (𝜑𝐹:(1...𝑀)⟶𝐴)
54ffvelcdmda 5653 . . . . 5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) ∈ 𝐴)
6 fsum.1 . . . . . 6 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
76adantl 277 . . . . 5 (((𝜑𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹𝑛)) → 𝐵 = 𝐶)
85, 7csbied 3105 . . . 4 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 = 𝐶)
9 fsum.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
109ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
1110adantr 276 . . . . 5 ((𝜑𝑛 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
12 nfcsb1v 3092 . . . . . . 7 𝑘(𝐹𝑛) / 𝑘𝐵
1312nfel1 2330 . . . . . 6 𝑘(𝐹𝑛) / 𝑘𝐵 ∈ ℂ
14 csbeq1a 3068 . . . . . . 7 (𝑘 = (𝐹𝑛) → 𝐵 = (𝐹𝑛) / 𝑘𝐵)
1514eleq1d 2246 . . . . . 6 (𝑘 = (𝐹𝑛) → (𝐵 ∈ ℂ ↔ (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
1613, 15rspc 2837 . . . . 5 ((𝐹𝑛) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
175, 11, 16sylc 62 . . . 4 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ)
188, 17eqeltrrd 2255 . . 3 ((𝜑𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ)
191, 18eqeltrd 2254 . 2 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) ∈ ℂ)
2019ralrimiva 2550 1 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  csb 3059  wf 5214  1-1-ontowf1o 5217  cfv 5218  (class class class)co 5877  cc 7811  1c1 7814  cn 8921  ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-f1o 5225  df-fv 5226
This theorem is referenced by:  fsum3  11397  fprodseq  11593
  Copyright terms: Public domain W3C validator