Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsumgcl | GIF version |
Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.) |
Ref | Expression |
---|---|
fsum.1 | ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) |
fsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
fsum.3 | ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) |
fsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fsum.5 | ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) |
Ref | Expression |
---|---|
fsumgcl | ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsum.5 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) | |
2 | fsum.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) | |
3 | f1of 5432 | . . . . . . 7 ⊢ (𝐹:(1...𝑀)–1-1-onto→𝐴 → 𝐹:(1...𝑀)⟶𝐴) | |
4 | 2, 3 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝐴) |
5 | 4 | ffvelrnda 5620 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐹‘𝑛) ∈ 𝐴) |
6 | fsum.1 | . . . . . 6 ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) | |
7 | 6 | adantl 275 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹‘𝑛)) → 𝐵 = 𝐶) |
8 | 5, 7 | csbied 3091 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐶) |
9 | fsum.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
10 | 9 | ralrimiva 2539 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
11 | 10 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
12 | nfcsb1v 3078 | . . . . . . 7 ⊢ Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 | |
13 | 12 | nfel1 2319 | . . . . . 6 ⊢ Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ |
14 | csbeq1a 3054 | . . . . . . 7 ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) | |
15 | 14 | eleq1d 2235 | . . . . . 6 ⊢ (𝑘 = (𝐹‘𝑛) → (𝐵 ∈ ℂ ↔ ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) |
16 | 13, 15 | rspc 2824 | . . . . 5 ⊢ ((𝐹‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) |
17 | 5, 11, 16 | sylc 62 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ) |
18 | 8, 17 | eqeltrrd 2244 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ) |
19 | 1, 18 | eqeltrd 2243 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) ∈ ℂ) |
20 | 19 | ralrimiva 2539 | 1 ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⦋csb 3045 ⟶wf 5184 –1-1-onto→wf1o 5187 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 1c1 7754 ℕcn 8857 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: fsum3 11328 fprodseq 11524 |
Copyright terms: Public domain | W3C validator |