ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumgcl GIF version

Theorem fsumgcl 11616
Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
fsum.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fsum.2 (𝜑𝑀 ∈ ℕ)
fsum.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsum.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fsumgcl (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fsumgcl
StepHypRef Expression
1 fsum.5 . . 3 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
2 fsum.3 . . . . . . 7 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
3 f1of 5516 . . . . . . 7 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
42, 3syl 14 . . . . . 6 (𝜑𝐹:(1...𝑀)⟶𝐴)
54ffvelcdmda 5709 . . . . 5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) ∈ 𝐴)
6 fsum.1 . . . . . 6 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
76adantl 277 . . . . 5 (((𝜑𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹𝑛)) → 𝐵 = 𝐶)
85, 7csbied 3139 . . . 4 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 = 𝐶)
9 fsum.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
109ralrimiva 2578 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
1110adantr 276 . . . . 5 ((𝜑𝑛 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
12 nfcsb1v 3125 . . . . . . 7 𝑘(𝐹𝑛) / 𝑘𝐵
1312nfel1 2358 . . . . . 6 𝑘(𝐹𝑛) / 𝑘𝐵 ∈ ℂ
14 csbeq1a 3101 . . . . . . 7 (𝑘 = (𝐹𝑛) → 𝐵 = (𝐹𝑛) / 𝑘𝐵)
1514eleq1d 2273 . . . . . 6 (𝑘 = (𝐹𝑛) → (𝐵 ∈ ℂ ↔ (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
1613, 15rspc 2870 . . . . 5 ((𝐹𝑛) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
175, 11, 16sylc 62 . . . 4 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ)
188, 17eqeltrrd 2282 . . 3 ((𝜑𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ)
191, 18eqeltrd 2281 . 2 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) ∈ ℂ)
2019ralrimiva 2578 1 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wral 2483  csb 3092  wf 5264  1-1-ontowf1o 5267  cfv 5268  (class class class)co 5934  cc 7905  1c1 7908  cn 9018  ...cfz 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-f1o 5275  df-fv 5276
This theorem is referenced by:  fsum3  11617  fprodseq  11813
  Copyright terms: Public domain W3C validator