ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodeq0 GIF version

Theorem fprodeq0 11496
Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodeq0.1 𝑍 = (ℤ𝑀)
fprodeq0.2 (𝜑𝑁𝑍)
fprodeq0.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fprodeq0.4 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
Assertion
Ref Expression
fprodeq0 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Distinct variable groups:   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodeq0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eluzel2 9427 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 275 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
32zred 9269 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
43ltp1d 8784 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 < (𝑁 + 1))
5 fzdisj 9936 . . . 4 (𝑁 < (𝑁 + 1) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
64, 5syl 14 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
7 fprodeq0.2 . . . . . . . 8 (𝜑𝑁𝑍)
8 eluzel2 9427 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 fprodeq0.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9eleq2s 2252 . . . . . . . 8 (𝑁𝑍𝑀 ∈ ℤ)
117, 10syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1211adantr 274 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
13 eluzelz 9431 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
1413adantl 275 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
1512, 14, 23jca 1162 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
16 eluzle 9434 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
1716, 9eleq2s 2252 . . . . . . 7 (𝑁𝑍𝑀𝑁)
187, 17syl 14 . . . . . 6 (𝜑𝑀𝑁)
19 eluzle 9434 . . . . . 6 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2018, 19anim12i 336 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀𝑁𝑁𝐾))
21 elfz2 9901 . . . . 5 (𝑁 ∈ (𝑀...𝐾) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝑁𝑁𝐾)))
2215, 20, 21sylanbrc 414 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ (𝑀...𝐾))
23 fzsplit 9935 . . . 4 (𝑁 ∈ (𝑀...𝐾) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
2422, 23syl 14 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
2512, 14fzfigd 10312 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) ∈ Fin)
26 elfzelz 9910 . . . . . 6 (𝑗 ∈ (𝑀...𝐾) → 𝑗 ∈ ℤ)
2726adantl 275 . . . . 5 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → 𝑗 ∈ ℤ)
2812adantr 274 . . . . 5 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → 𝑀 ∈ ℤ)
292adantr 274 . . . . 5 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → 𝑁 ∈ ℤ)
30 fzdcel 9924 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑗 ∈ (𝑀...𝑁))
3127, 28, 29, 30syl3anc 1220 . . . 4 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → DECID 𝑗 ∈ (𝑀...𝑁))
3231ralrimiva 2530 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∀𝑗 ∈ (𝑀...𝐾)DECID 𝑗 ∈ (𝑀...𝑁))
33 elfzuz 9906 . . . . . 6 (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ𝑀))
3433, 9eleqtrrdi 2251 . . . . 5 (𝑘 ∈ (𝑀...𝐾) → 𝑘𝑍)
35 fprodeq0.3 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
3634, 35sylan2 284 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
3736adantlr 469 . . 3 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
386, 24, 25, 32, 37fprodsplitdc 11475 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
397, 9eleqtrdi 2250 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
40 elfzuz 9906 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
4140, 9eleqtrrdi 2251 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑍)
4241, 35sylan2 284 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
4339, 42fprodm1s 11480 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴))
44 fprodeq0.4 . . . . . . 7 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
457, 44csbied 3077 . . . . . 6 (𝜑𝑁 / 𝑘𝐴 = 0)
4645oveq2d 5834 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0))
47 eluzelz 9431 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4839, 47syl 14 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
49 peano2zm 9188 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
5048, 49syl 14 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℤ)
5111, 50fzfigd 10312 . . . . . . 7 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
52 elfzuz 9906 . . . . . . . . 9 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
5352, 9eleqtrrdi 2251 . . . . . . . 8 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
5453, 35sylan2 284 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
5551, 54fprodcl 11486 . . . . . 6 (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
5655mul01d 8251 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0) = 0)
5743, 46, 563eqtrd 2194 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
5857adantr 274 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
5958oveq1d 5833 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
602peano2zd 9272 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑁 + 1) ∈ ℤ)
6160, 14fzfigd 10312 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑁 + 1)...𝐾) ∈ Fin)
629peano2uzs 9478 . . . . . . . . 9 (𝑁𝑍 → (𝑁 + 1) ∈ 𝑍)
637, 62syl 14 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ 𝑍)
64 elfzuz 9906 . . . . . . . 8 (𝑘 ∈ ((𝑁 + 1)...𝐾) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
659uztrn2 9439 . . . . . . . 8 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
6663, 64, 65syl2an 287 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝑘𝑍)
6766adantrl 470 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝑘𝑍)
6867, 35syldan 280 . . . . 5 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝐴 ∈ ℂ)
6968anassrs 398 . . . 4 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝐴 ∈ ℂ)
7061, 69fprodcl 11486 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴 ∈ ℂ)
7170mul02d 8250 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = 0)
7238, 59, 713eqtrd 2194 1 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 820  w3a 963   = wceq 1335  wcel 2128  csb 3031  cun 3100  cin 3101  c0 3394   class class class wbr 3965  cfv 5167  (class class class)co 5818  cc 7713  0cc0 7715  1c1 7716   + caddc 7718   · cmul 7720   < clt 7895  cle 7896  cmin 8029  cz 9150  cuz 9422  ...cfz 9894  cprod 11429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-oadd 6361  df-er 6473  df-en 6679  df-dom 6680  df-fin 6681  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-ihash 10632  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-proddc 11430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator