ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodeq0 GIF version

Theorem fprodeq0 11609
Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodeq0.1 𝑍 = (ℤ𝑀)
fprodeq0.2 (𝜑𝑁𝑍)
fprodeq0.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fprodeq0.4 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
Assertion
Ref Expression
fprodeq0 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Distinct variable groups:   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodeq0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eluzel2 9522 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 277 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
32zred 9364 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
43ltp1d 8876 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 < (𝑁 + 1))
5 fzdisj 10038 . . . 4 (𝑁 < (𝑁 + 1) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
64, 5syl 14 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
7 fprodeq0.2 . . . . . . . 8 (𝜑𝑁𝑍)
8 eluzel2 9522 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 fprodeq0.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9eleq2s 2272 . . . . . . . 8 (𝑁𝑍𝑀 ∈ ℤ)
117, 10syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1211adantr 276 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
13 eluzelz 9526 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
1413adantl 277 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
1512, 14, 23jca 1177 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
16 eluzle 9529 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
1716, 9eleq2s 2272 . . . . . . 7 (𝑁𝑍𝑀𝑁)
187, 17syl 14 . . . . . 6 (𝜑𝑀𝑁)
19 eluzle 9529 . . . . . 6 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2018, 19anim12i 338 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀𝑁𝑁𝐾))
21 elfz2 10002 . . . . 5 (𝑁 ∈ (𝑀...𝐾) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝑁𝑁𝐾)))
2215, 20, 21sylanbrc 417 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ (𝑀...𝐾))
23 fzsplit 10037 . . . 4 (𝑁 ∈ (𝑀...𝐾) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
2422, 23syl 14 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
2512, 14fzfigd 10417 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) ∈ Fin)
26 elfzelz 10011 . . . . . 6 (𝑗 ∈ (𝑀...𝐾) → 𝑗 ∈ ℤ)
2726adantl 277 . . . . 5 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → 𝑗 ∈ ℤ)
2812adantr 276 . . . . 5 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → 𝑀 ∈ ℤ)
292adantr 276 . . . . 5 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → 𝑁 ∈ ℤ)
30 fzdcel 10026 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑗 ∈ (𝑀...𝑁))
3127, 28, 29, 30syl3anc 1238 . . . 4 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → DECID 𝑗 ∈ (𝑀...𝑁))
3231ralrimiva 2550 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∀𝑗 ∈ (𝑀...𝐾)DECID 𝑗 ∈ (𝑀...𝑁))
33 elfzuz 10007 . . . . . 6 (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ𝑀))
3433, 9eleqtrrdi 2271 . . . . 5 (𝑘 ∈ (𝑀...𝐾) → 𝑘𝑍)
35 fprodeq0.3 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
3634, 35sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
3736adantlr 477 . . 3 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
386, 24, 25, 32, 37fprodsplitdc 11588 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
397, 9eleqtrdi 2270 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
40 elfzuz 10007 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
4140, 9eleqtrrdi 2271 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑍)
4241, 35sylan2 286 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
4339, 42fprodm1s 11593 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴))
44 fprodeq0.4 . . . . . . 7 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
457, 44csbied 3103 . . . . . 6 (𝜑𝑁 / 𝑘𝐴 = 0)
4645oveq2d 5885 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0))
47 eluzelz 9526 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4839, 47syl 14 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
49 peano2zm 9280 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
5048, 49syl 14 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℤ)
5111, 50fzfigd 10417 . . . . . . 7 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
52 elfzuz 10007 . . . . . . . . 9 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
5352, 9eleqtrrdi 2271 . . . . . . . 8 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
5453, 35sylan2 286 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
5551, 54fprodcl 11599 . . . . . 6 (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
5655mul01d 8340 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0) = 0)
5743, 46, 563eqtrd 2214 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
5857adantr 276 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
5958oveq1d 5884 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
602peano2zd 9367 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑁 + 1) ∈ ℤ)
6160, 14fzfigd 10417 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑁 + 1)...𝐾) ∈ Fin)
629peano2uzs 9573 . . . . . . . . 9 (𝑁𝑍 → (𝑁 + 1) ∈ 𝑍)
637, 62syl 14 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ 𝑍)
64 elfzuz 10007 . . . . . . . 8 (𝑘 ∈ ((𝑁 + 1)...𝐾) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
659uztrn2 9534 . . . . . . . 8 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
6663, 64, 65syl2an 289 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝑘𝑍)
6766adantrl 478 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝑘𝑍)
6867, 35syldan 282 . . . . 5 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝐴 ∈ ℂ)
6968anassrs 400 . . . 4 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝐴 ∈ ℂ)
7061, 69fprodcl 11599 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴 ∈ ℂ)
7170mul02d 8339 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = 0)
7238, 59, 713eqtrd 2214 1 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148  csb 3057  cun 3127  cin 3128  c0 3422   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118  cz 9242  cuz 9517  ...cfz 9995  cprod 11542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator