ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodeq0 GIF version

Theorem fprodeq0 12123
Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodeq0.1 𝑍 = (ℤ𝑀)
fprodeq0.2 (𝜑𝑁𝑍)
fprodeq0.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fprodeq0.4 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
Assertion
Ref Expression
fprodeq0 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Distinct variable groups:   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodeq0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eluzel2 9723 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 277 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
32zred 9565 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
43ltp1d 9073 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 < (𝑁 + 1))
5 fzdisj 10244 . . . 4 (𝑁 < (𝑁 + 1) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
64, 5syl 14 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
7 fprodeq0.2 . . . . . . . 8 (𝜑𝑁𝑍)
8 eluzel2 9723 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 fprodeq0.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9eleq2s 2324 . . . . . . . 8 (𝑁𝑍𝑀 ∈ ℤ)
117, 10syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1211adantr 276 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
13 eluzelz 9727 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
1413adantl 277 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
1512, 14, 23jca 1201 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
16 eluzle 9730 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
1716, 9eleq2s 2324 . . . . . . 7 (𝑁𝑍𝑀𝑁)
187, 17syl 14 . . . . . 6 (𝜑𝑀𝑁)
19 eluzle 9730 . . . . . 6 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2018, 19anim12i 338 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀𝑁𝑁𝐾))
21 elfz2 10207 . . . . 5 (𝑁 ∈ (𝑀...𝐾) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝑁𝑁𝐾)))
2215, 20, 21sylanbrc 417 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ (𝑀...𝐾))
23 fzsplit 10243 . . . 4 (𝑁 ∈ (𝑀...𝐾) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
2422, 23syl 14 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
2512, 14fzfigd 10648 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) ∈ Fin)
26 elfzelz 10217 . . . . . 6 (𝑗 ∈ (𝑀...𝐾) → 𝑗 ∈ ℤ)
2726adantl 277 . . . . 5 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → 𝑗 ∈ ℤ)
2812adantr 276 . . . . 5 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → 𝑀 ∈ ℤ)
292adantr 276 . . . . 5 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → 𝑁 ∈ ℤ)
30 fzdcel 10232 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑗 ∈ (𝑀...𝑁))
3127, 28, 29, 30syl3anc 1271 . . . 4 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑗 ∈ (𝑀...𝐾)) → DECID 𝑗 ∈ (𝑀...𝑁))
3231ralrimiva 2603 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∀𝑗 ∈ (𝑀...𝐾)DECID 𝑗 ∈ (𝑀...𝑁))
33 elfzuz 10213 . . . . . 6 (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ𝑀))
3433, 9eleqtrrdi 2323 . . . . 5 (𝑘 ∈ (𝑀...𝐾) → 𝑘𝑍)
35 fprodeq0.3 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
3634, 35sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
3736adantlr 477 . . 3 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
386, 24, 25, 32, 37fprodsplitdc 12102 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
397, 9eleqtrdi 2322 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
40 elfzuz 10213 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
4140, 9eleqtrrdi 2323 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑍)
4241, 35sylan2 286 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
4339, 42fprodm1s 12107 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴))
44 fprodeq0.4 . . . . . . 7 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
457, 44csbied 3171 . . . . . 6 (𝜑𝑁 / 𝑘𝐴 = 0)
4645oveq2d 6016 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0))
47 eluzelz 9727 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4839, 47syl 14 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
49 peano2zm 9480 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
5048, 49syl 14 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℤ)
5111, 50fzfigd 10648 . . . . . . 7 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
52 elfzuz 10213 . . . . . . . . 9 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
5352, 9eleqtrrdi 2323 . . . . . . . 8 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
5453, 35sylan2 286 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
5551, 54fprodcl 12113 . . . . . 6 (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
5655mul01d 8535 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0) = 0)
5743, 46, 563eqtrd 2266 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
5857adantr 276 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
5958oveq1d 6015 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
602peano2zd 9568 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑁 + 1) ∈ ℤ)
6160, 14fzfigd 10648 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑁 + 1)...𝐾) ∈ Fin)
629peano2uzs 9775 . . . . . . . . 9 (𝑁𝑍 → (𝑁 + 1) ∈ 𝑍)
637, 62syl 14 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ 𝑍)
64 elfzuz 10213 . . . . . . . 8 (𝑘 ∈ ((𝑁 + 1)...𝐾) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
659uztrn2 9736 . . . . . . . 8 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
6663, 64, 65syl2an 289 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝑘𝑍)
6766adantrl 478 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝑘𝑍)
6867, 35syldan 282 . . . . 5 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝐴 ∈ ℂ)
6968anassrs 400 . . . 4 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝐴 ∈ ℂ)
7061, 69fprodcl 12113 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴 ∈ ℂ)
7170mul02d 8534 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = 0)
7238, 59, 713eqtrd 2266 1 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  csb 3124  cun 3195  cin 3196  c0 3491   class class class wbr 4082  cfv 5317  (class class class)co 6000  cc 7993  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000   < clt 8177  cle 8178  cmin 8313  cz 9442  cuz 9718  ...cfz 10200  cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator