ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumshftm GIF version

Theorem fsumshftm 10988
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1 (𝜑𝐾 ∈ ℤ)
fsumrev.2 (𝜑𝑀 ∈ ℤ)
fsumrev.3 (𝜑𝑁 ∈ ℤ)
fsumrev.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumshftm.5 (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumshftm (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumshftm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2235 . . 3 𝑚𝐴
2 nfcsb1v 2977 . . 3 𝑗𝑚 / 𝑗𝐴
3 csbeq1a 2955 . . 3 (𝑗 = 𝑚𝐴 = 𝑚 / 𝑗𝐴)
41, 2, 3cbvsumi 10905 . 2 Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴
5 fsumrev.1 . . . . 5 (𝜑𝐾 ∈ ℤ)
65znegcld 8969 . . . 4 (𝜑 → -𝐾 ∈ ℤ)
7 fsumrev.2 . . . 4 (𝜑𝑀 ∈ ℤ)
8 fsumrev.3 . . . 4 (𝜑𝑁 ∈ ℤ)
9 fsumrev.4 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
109ralrimiva 2458 . . . . 5 (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
112nfel1 2246 . . . . . 6 𝑗𝑚 / 𝑗𝐴 ∈ ℂ
123eleq1d 2163 . . . . . 6 (𝑗 = 𝑚 → (𝐴 ∈ ℂ ↔ 𝑚 / 𝑗𝐴 ∈ ℂ))
1311, 12rspc 2730 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝑚 / 𝑗𝐴 ∈ ℂ))
1410, 13mpan9 276 . . . 4 ((𝜑𝑚 ∈ (𝑀...𝑁)) → 𝑚 / 𝑗𝐴 ∈ ℂ)
15 csbeq1 2950 . . . 4 (𝑚 = (𝑘 − -𝐾) → 𝑚 / 𝑗𝐴 = (𝑘 − -𝐾) / 𝑗𝐴)
166, 7, 8, 14, 15fsumshft 10987 . . 3 (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))(𝑘 − -𝐾) / 𝑗𝐴)
177zcnd 8968 . . . . . 6 (𝜑𝑀 ∈ ℂ)
185zcnd 8968 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1917, 18negsubd 7896 . . . . 5 (𝜑 → (𝑀 + -𝐾) = (𝑀𝐾))
208zcnd 8968 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120, 18negsubd 7896 . . . . 5 (𝜑 → (𝑁 + -𝐾) = (𝑁𝐾))
2219, 21oveq12d 5708 . . . 4 (𝜑 → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
2322sumeq1d 10909 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))(𝑘 − -𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))(𝑘 − -𝐾) / 𝑗𝐴)
24 elfzelz 9589 . . . . . . . 8 (𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾)) → 𝑘 ∈ ℤ)
2524zcnd 8968 . . . . . . 7 (𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾)) → 𝑘 ∈ ℂ)
26 subneg 7828 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑘 − -𝐾) = (𝑘 + 𝐾))
2725, 18, 26syl2anr 285 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) = (𝑘 + 𝐾))
2827csbeq1d 2953 . . . . 5 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) / 𝑗𝐴 = (𝑘 + 𝐾) / 𝑗𝐴)
2924adantl 272 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → 𝑘 ∈ ℤ)
305adantr 271 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → 𝐾 ∈ ℤ)
3129, 30zaddcld 8971 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 + 𝐾) ∈ ℤ)
32 fsumshftm.5 . . . . . . 7 (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵)
3332adantl 272 . . . . . 6 (((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) ∧ 𝑗 = (𝑘 + 𝐾)) → 𝐴 = 𝐵)
3431, 33csbied 2988 . . . . 5 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 + 𝐾) / 𝑗𝐴 = 𝐵)
3528, 34eqtrd 2127 . . . 4 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) / 𝑗𝐴 = 𝐵)
3635sumeq2dv 10911 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))(𝑘 − -𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
3716, 23, 363eqtrd 2131 . 2 (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
384, 37syl5eq 2139 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  wral 2370  csb 2947  (class class class)co 5690  cc 7445   + caddc 7450  cmin 7750  -cneg 7751  cz 8848  ...cfz 9573  Σcsu 10896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-isom 5058  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-frec 6194  df-1o 6219  df-oadd 6223  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-fz 9574  df-fzo 9703  df-seqfrec 10001  df-exp 10070  df-ihash 10299  df-cj 10391  df-re 10392  df-im 10393  df-rsqrt 10546  df-abs 10547  df-clim 10822  df-sumdc 10897
This theorem is referenced by:  telfsumo  11009  fsumparts  11013  arisum  11041  geo2sum  11057
  Copyright terms: Public domain W3C validator