ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumshftm GIF version

Theorem fsumshftm 11956
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1 (𝜑𝐾 ∈ ℤ)
fsumrev.2 (𝜑𝑀 ∈ ℤ)
fsumrev.3 (𝜑𝑁 ∈ ℤ)
fsumrev.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumshftm.5 (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumshftm (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumshftm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2372 . . 3 𝑚𝐴
2 nfcsb1v 3157 . . 3 𝑗𝑚 / 𝑗𝐴
3 csbeq1a 3133 . . 3 (𝑗 = 𝑚𝐴 = 𝑚 / 𝑗𝐴)
41, 2, 3cbvsumi 11873 . 2 Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴
5 fsumrev.1 . . . . 5 (𝜑𝐾 ∈ ℤ)
65znegcld 9571 . . . 4 (𝜑 → -𝐾 ∈ ℤ)
7 fsumrev.2 . . . 4 (𝜑𝑀 ∈ ℤ)
8 fsumrev.3 . . . 4 (𝜑𝑁 ∈ ℤ)
9 fsumrev.4 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
109ralrimiva 2603 . . . . 5 (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
112nfel1 2383 . . . . . 6 𝑗𝑚 / 𝑗𝐴 ∈ ℂ
123eleq1d 2298 . . . . . 6 (𝑗 = 𝑚 → (𝐴 ∈ ℂ ↔ 𝑚 / 𝑗𝐴 ∈ ℂ))
1311, 12rspc 2901 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝑚 / 𝑗𝐴 ∈ ℂ))
1410, 13mpan9 281 . . . 4 ((𝜑𝑚 ∈ (𝑀...𝑁)) → 𝑚 / 𝑗𝐴 ∈ ℂ)
15 csbeq1 3127 . . . 4 (𝑚 = (𝑘 − -𝐾) → 𝑚 / 𝑗𝐴 = (𝑘 − -𝐾) / 𝑗𝐴)
166, 7, 8, 14, 15fsumshft 11955 . . 3 (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))(𝑘 − -𝐾) / 𝑗𝐴)
177zcnd 9570 . . . . . 6 (𝜑𝑀 ∈ ℂ)
185zcnd 9570 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1917, 18negsubd 8463 . . . . 5 (𝜑 → (𝑀 + -𝐾) = (𝑀𝐾))
208zcnd 9570 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120, 18negsubd 8463 . . . . 5 (𝜑 → (𝑁 + -𝐾) = (𝑁𝐾))
2219, 21oveq12d 6019 . . . 4 (𝜑 → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
2322sumeq1d 11877 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))(𝑘 − -𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))(𝑘 − -𝐾) / 𝑗𝐴)
24 elfzelz 10221 . . . . . . . 8 (𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾)) → 𝑘 ∈ ℤ)
2524zcnd 9570 . . . . . . 7 (𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾)) → 𝑘 ∈ ℂ)
26 subneg 8395 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑘 − -𝐾) = (𝑘 + 𝐾))
2725, 18, 26syl2anr 290 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) = (𝑘 + 𝐾))
2827csbeq1d 3131 . . . . 5 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) / 𝑗𝐴 = (𝑘 + 𝐾) / 𝑗𝐴)
2924adantl 277 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → 𝑘 ∈ ℤ)
305adantr 276 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → 𝐾 ∈ ℤ)
3129, 30zaddcld 9573 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 + 𝐾) ∈ ℤ)
32 fsumshftm.5 . . . . . . 7 (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵)
3332adantl 277 . . . . . 6 (((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) ∧ 𝑗 = (𝑘 + 𝐾)) → 𝐴 = 𝐵)
3431, 33csbied 3171 . . . . 5 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 + 𝐾) / 𝑗𝐴 = 𝐵)
3528, 34eqtrd 2262 . . . 4 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) / 𝑗𝐴 = 𝐵)
3635sumeq2dv 11879 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))(𝑘 − -𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
3716, 23, 363eqtrd 2266 . 2 (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
384, 37eqtrid 2274 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  csb 3124  (class class class)co 6001  cc 7997   + caddc 8002  cmin 8317  -cneg 8318  cz 9446  ...cfz 10204  Σcsu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by:  telfsumo  11977  fsumparts  11981  arisum  12009  geo2sum  12025  dvply1  15439
  Copyright terms: Public domain W3C validator