| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumshftm | GIF version | ||
| Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumrev.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| fsumrev.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| fsumrev.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fsumrev.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fsumshftm.5 | ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fsumshftm | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑚𝐴 | |
| 2 | nfcsb1v 3117 | . . 3 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 | |
| 3 | csbeq1a 3093 | . . 3 ⊢ (𝑗 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑗⦌𝐴) | |
| 4 | 1, 2, 3 | cbvsumi 11532 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 |
| 5 | fsumrev.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 6 | 5 | znegcld 9455 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
| 7 | fsumrev.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | fsumrev.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 9 | fsumrev.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 10 | 9 | ralrimiva 2570 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 11 | 2 | nfel1 2350 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ |
| 12 | 3 | eleq1d 2265 | . . . . . 6 ⊢ (𝑗 = 𝑚 → (𝐴 ∈ ℂ ↔ ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
| 13 | 11, 12 | rspc 2862 | . . . . 5 ⊢ (𝑚 ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
| 14 | 10, 13 | mpan9 281 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑁)) → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ) |
| 15 | csbeq1 3087 | . . . 4 ⊢ (𝑚 = (𝑘 − -𝐾) → ⦋𝑚 / 𝑗⦌𝐴 = ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) | |
| 16 | 6, 7, 8, 14, 15 | fsumshft 11614 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
| 17 | 7 | zcnd 9454 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 18 | 5 | zcnd 9454 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 19 | 17, 18 | negsubd 8348 | . . . . 5 ⊢ (𝜑 → (𝑀 + -𝐾) = (𝑀 − 𝐾)) |
| 20 | 8 | zcnd 9454 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 21 | 20, 18 | negsubd 8348 | . . . . 5 ⊢ (𝜑 → (𝑁 + -𝐾) = (𝑁 − 𝐾)) |
| 22 | 19, 21 | oveq12d 5943 | . . . 4 ⊢ (𝜑 → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
| 23 | 22 | sumeq1d 11536 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
| 24 | elfzelz 10105 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℤ) | |
| 25 | 24 | zcnd 9454 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℂ) |
| 26 | subneg 8280 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) | |
| 27 | 25, 18, 26 | syl2anr 290 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) |
| 28 | 27 | csbeq1d 3091 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴) |
| 29 | 24 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → 𝑘 ∈ ℤ) |
| 30 | 5 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → 𝐾 ∈ ℤ) |
| 31 | 29, 30 | zaddcld 9457 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → (𝑘 + 𝐾) ∈ ℤ) |
| 32 | fsumshftm.5 | . . . . . . 7 ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) | |
| 33 | 32 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) ∧ 𝑗 = (𝑘 + 𝐾)) → 𝐴 = 𝐵) |
| 34 | 31, 33 | csbied 3131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴 = 𝐵) |
| 35 | 28, 34 | eqtrd 2229 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = 𝐵) |
| 36 | 35 | sumeq2dv 11538 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| 37 | 16, 23, 36 | 3eqtrd 2233 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| 38 | 4, 37 | eqtrid 2241 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⦋csb 3084 (class class class)co 5925 ℂcc 7882 + caddc 7887 − cmin 8202 -cneg 8203 ℤcz 9331 ...cfz 10088 Σcsu 11523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7975 ax-resscn 7976 ax-1cn 7977 ax-1re 7978 ax-icn 7979 ax-addcl 7980 ax-addrcl 7981 ax-mulcl 7982 ax-mulrcl 7983 ax-addcom 7984 ax-mulcom 7985 ax-addass 7986 ax-mulass 7987 ax-distr 7988 ax-i2m1 7989 ax-0lt1 7990 ax-1rid 7991 ax-0id 7992 ax-rnegex 7993 ax-precex 7994 ax-cnre 7995 ax-pre-ltirr 7996 ax-pre-ltwlin 7997 ax-pre-lttrn 7998 ax-pre-apti 7999 ax-pre-ltadd 8000 ax-pre-mulgt0 8001 ax-pre-mulext 8002 ax-arch 8003 ax-caucvg 8004 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6202 df-2nd 6203 df-recs 6367 df-irdg 6432 df-frec 6453 df-1o 6478 df-oadd 6482 df-er 6596 df-en 6804 df-dom 6805 df-fin 6806 df-pnf 8068 df-mnf 8069 df-xr 8070 df-ltxr 8071 df-le 8072 df-sub 8204 df-neg 8205 df-reap 8607 df-ap 8614 df-div 8705 df-inn 8996 df-2 9054 df-3 9055 df-4 9056 df-n0 9255 df-z 9332 df-uz 9607 df-q 9699 df-rp 9734 df-fz 10089 df-fzo 10223 df-seqfrec 10545 df-exp 10636 df-ihash 10873 df-cj 11012 df-re 11013 df-im 11014 df-rsqrt 11168 df-abs 11169 df-clim 11449 df-sumdc 11524 |
| This theorem is referenced by: telfsumo 11636 fsumparts 11640 arisum 11668 geo2sum 11684 dvply1 15048 |
| Copyright terms: Public domain | W3C validator |