| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumshftm | GIF version | ||
| Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumrev.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| fsumrev.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| fsumrev.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fsumrev.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fsumshftm.5 | ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fsumshftm | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 | . . 3 ⊢ Ⅎ𝑚𝐴 | |
| 2 | nfcsb1v 3134 | . . 3 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 | |
| 3 | csbeq1a 3110 | . . 3 ⊢ (𝑗 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑗⦌𝐴) | |
| 4 | 1, 2, 3 | cbvsumi 11788 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 |
| 5 | fsumrev.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 6 | 5 | znegcld 9532 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
| 7 | fsumrev.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | fsumrev.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 9 | fsumrev.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 10 | 9 | ralrimiva 2581 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 11 | 2 | nfel1 2361 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ |
| 12 | 3 | eleq1d 2276 | . . . . . 6 ⊢ (𝑗 = 𝑚 → (𝐴 ∈ ℂ ↔ ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
| 13 | 11, 12 | rspc 2878 | . . . . 5 ⊢ (𝑚 ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
| 14 | 10, 13 | mpan9 281 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑁)) → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ) |
| 15 | csbeq1 3104 | . . . 4 ⊢ (𝑚 = (𝑘 − -𝐾) → ⦋𝑚 / 𝑗⦌𝐴 = ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) | |
| 16 | 6, 7, 8, 14, 15 | fsumshft 11870 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
| 17 | 7 | zcnd 9531 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 18 | 5 | zcnd 9531 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 19 | 17, 18 | negsubd 8424 | . . . . 5 ⊢ (𝜑 → (𝑀 + -𝐾) = (𝑀 − 𝐾)) |
| 20 | 8 | zcnd 9531 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 21 | 20, 18 | negsubd 8424 | . . . . 5 ⊢ (𝜑 → (𝑁 + -𝐾) = (𝑁 − 𝐾)) |
| 22 | 19, 21 | oveq12d 5985 | . . . 4 ⊢ (𝜑 → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
| 23 | 22 | sumeq1d 11792 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
| 24 | elfzelz 10182 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℤ) | |
| 25 | 24 | zcnd 9531 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℂ) |
| 26 | subneg 8356 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) | |
| 27 | 25, 18, 26 | syl2anr 290 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) |
| 28 | 27 | csbeq1d 3108 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴) |
| 29 | 24 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → 𝑘 ∈ ℤ) |
| 30 | 5 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → 𝐾 ∈ ℤ) |
| 31 | 29, 30 | zaddcld 9534 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → (𝑘 + 𝐾) ∈ ℤ) |
| 32 | fsumshftm.5 | . . . . . . 7 ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) | |
| 33 | 32 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) ∧ 𝑗 = (𝑘 + 𝐾)) → 𝐴 = 𝐵) |
| 34 | 31, 33 | csbied 3148 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴 = 𝐵) |
| 35 | 28, 34 | eqtrd 2240 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = 𝐵) |
| 36 | 35 | sumeq2dv 11794 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| 37 | 16, 23, 36 | 3eqtrd 2244 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| 38 | 4, 37 | eqtrid 2252 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ⦋csb 3101 (class class class)co 5967 ℂcc 7958 + caddc 7963 − cmin 8278 -cneg 8279 ℤcz 9407 ...cfz 10165 Σcsu 11779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 |
| This theorem is referenced by: telfsumo 11892 fsumparts 11896 arisum 11924 geo2sum 11940 dvply1 15352 |
| Copyright terms: Public domain | W3C validator |