Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsumshftm | GIF version |
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumrev.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
fsumrev.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fsumrev.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fsumrev.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsumshftm.5 | ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fsumshftm | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . . 3 ⊢ Ⅎ𝑚𝐴 | |
2 | nfcsb1v 3082 | . . 3 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 | |
3 | csbeq1a 3058 | . . 3 ⊢ (𝑗 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑗⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 11325 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 |
5 | fsumrev.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
6 | 5 | znegcld 9336 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
7 | fsumrev.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | fsumrev.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
9 | fsumrev.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
10 | 9 | ralrimiva 2543 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
11 | 2 | nfel1 2323 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ |
12 | 3 | eleq1d 2239 | . . . . . 6 ⊢ (𝑗 = 𝑚 → (𝐴 ∈ ℂ ↔ ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
13 | 11, 12 | rspc 2828 | . . . . 5 ⊢ (𝑚 ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ)) |
14 | 10, 13 | mpan9 279 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑁)) → ⦋𝑚 / 𝑗⦌𝐴 ∈ ℂ) |
15 | csbeq1 3052 | . . . 4 ⊢ (𝑚 = (𝑘 − -𝐾) → ⦋𝑚 / 𝑗⦌𝐴 = ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) | |
16 | 6, 7, 8, 14, 15 | fsumshft 11407 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
17 | 7 | zcnd 9335 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
18 | 5 | zcnd 9335 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
19 | 17, 18 | negsubd 8236 | . . . . 5 ⊢ (𝜑 → (𝑀 + -𝐾) = (𝑀 − 𝐾)) |
20 | 8 | zcnd 9335 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
21 | 20, 18 | negsubd 8236 | . . . . 5 ⊢ (𝜑 → (𝑁 + -𝐾) = (𝑁 − 𝐾)) |
22 | 19, 21 | oveq12d 5871 | . . . 4 ⊢ (𝜑 → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀 − 𝐾)...(𝑁 − 𝐾))) |
23 | 22 | sumeq1d 11329 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴) |
24 | elfzelz 9981 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℤ) | |
25 | 24 | zcnd 9335 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)) → 𝑘 ∈ ℂ) |
26 | subneg 8168 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) | |
27 | 25, 18, 26 | syl2anr 288 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → (𝑘 − -𝐾) = (𝑘 + 𝐾)) |
28 | 27 | csbeq1d 3056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴) |
29 | 24 | adantl 275 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → 𝑘 ∈ ℤ) |
30 | 5 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → 𝐾 ∈ ℤ) |
31 | 29, 30 | zaddcld 9338 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → (𝑘 + 𝐾) ∈ ℤ) |
32 | fsumshftm.5 | . . . . . . 7 ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) | |
33 | 32 | adantl 275 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) ∧ 𝑗 = (𝑘 + 𝐾)) → 𝐴 = 𝐵) |
34 | 31, 33 | csbied 3095 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 + 𝐾) / 𝑗⦌𝐴 = 𝐵) |
35 | 28, 34 | eqtrd 2203 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))) → ⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = 𝐵) |
36 | 35 | sumeq2dv 11331 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))⦋(𝑘 − -𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
37 | 16, 23, 36 | 3eqtrd 2207 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
38 | 4, 37 | eqtrid 2215 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ⦋csb 3049 (class class class)co 5853 ℂcc 7772 + caddc 7777 − cmin 8090 -cneg 8091 ℤcz 9212 ...cfz 9965 Σcsu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: telfsumo 11429 fsumparts 11433 arisum 11461 geo2sum 11477 |
Copyright terms: Public domain | W3C validator |