ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd GIF version

Theorem fvmptd 5717
Description: Deduction version of fvmpt 5713. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fvmptd.1 (𝜑𝐹 = (𝑥𝐷𝐵))
fvmptd.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fvmptd.3 (𝜑𝐴𝐷)
fvmptd.4 (𝜑𝐶𝑉)
Assertion
Ref Expression
fvmptd (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd
StepHypRef Expression
1 fvmptd.1 . . 3 (𝜑𝐹 = (𝑥𝐷𝐵))
21fveq1d 5631 . 2 (𝜑 → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
3 fvmptd.3 . . 3 (𝜑𝐴𝐷)
4 fvmptd.2 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
53, 4csbied 3171 . . . 4 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
6 fvmptd.4 . . . 4 (𝜑𝐶𝑉)
75, 6eqeltrd 2306 . . 3 (𝜑𝐴 / 𝑥𝐵𝑉)
8 eqid 2229 . . . 4 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
98fvmpts 5714 . . 3 ((𝐴𝐷𝐴 / 𝑥𝐵𝑉) → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
103, 7, 9syl2anc 411 . 2 (𝜑 → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
112, 10, 53eqtrd 2266 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  csb 3124  cmpt 4145  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by:  fvmptd2  5718  fvmptdv2  5726  rdgivallem  6533  1stinl  7249  2ndinl  7250  1stinr  7251  2ndinr  7252  updjudhcoinlf  7255  updjudhcoinrg  7256  cardcl  7361  caucvgsrlemfv  7986  caucvgsrlemoffval  7991  axcaucvglemval  8092  negiso  9110  infrenegsupex  9797  iseqf1olemfvp  10740  seq3f1olemqsum  10743  ccatval1  11140  ccatval2  11141  infxrnegsupex  11782  climcvg1nlem  11868  isumshft  12009  mulgnngsum  13672  sraval  14409  lmfval  14875  blfvalps  15067  cdivcncfap  15286  peano4nninf  16402  peano3nninf  16403  nninfsellemeq  16410  nninfsellemeqinf  16412
  Copyright terms: Public domain W3C validator