ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd GIF version

Theorem fvmptd 5670
Description: Deduction version of fvmpt 5666. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fvmptd.1 (𝜑𝐹 = (𝑥𝐷𝐵))
fvmptd.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fvmptd.3 (𝜑𝐴𝐷)
fvmptd.4 (𝜑𝐶𝑉)
Assertion
Ref Expression
fvmptd (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd
StepHypRef Expression
1 fvmptd.1 . . 3 (𝜑𝐹 = (𝑥𝐷𝐵))
21fveq1d 5588 . 2 (𝜑 → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
3 fvmptd.3 . . 3 (𝜑𝐴𝐷)
4 fvmptd.2 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
53, 4csbied 3142 . . . 4 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
6 fvmptd.4 . . . 4 (𝜑𝐶𝑉)
75, 6eqeltrd 2283 . . 3 (𝜑𝐴 / 𝑥𝐵𝑉)
8 eqid 2206 . . . 4 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
98fvmpts 5667 . . 3 ((𝐴𝐷𝐴 / 𝑥𝐵𝑉) → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
103, 7, 9syl2anc 411 . 2 (𝜑 → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
112, 10, 53eqtrd 2243 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  csb 3095  cmpt 4110  cfv 5277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-iota 5238  df-fun 5279  df-fv 5285
This theorem is referenced by:  fvmptd2  5671  fvmptdv2  5679  rdgivallem  6477  1stinl  7188  2ndinl  7189  1stinr  7190  2ndinr  7191  updjudhcoinlf  7194  updjudhcoinrg  7195  cardcl  7300  caucvgsrlemfv  7917  caucvgsrlemoffval  7922  axcaucvglemval  8023  negiso  9041  infrenegsupex  9728  iseqf1olemfvp  10668  seq3f1olemqsum  10671  ccatval1  11067  ccatval2  11068  infxrnegsupex  11624  climcvg1nlem  11710  isumshft  11851  mulgnngsum  13513  sraval  14249  lmfval  14714  blfvalps  14907  cdivcncfap  15126  peano4nninf  16058  peano3nninf  16059  nninfsellemeq  16066  nninfsellemeqinf  16068
  Copyright terms: Public domain W3C validator