ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd GIF version

Theorem fvmptd 5639
Description: Deduction version of fvmpt 5635. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fvmptd.1 (𝜑𝐹 = (𝑥𝐷𝐵))
fvmptd.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fvmptd.3 (𝜑𝐴𝐷)
fvmptd.4 (𝜑𝐶𝑉)
Assertion
Ref Expression
fvmptd (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd
StepHypRef Expression
1 fvmptd.1 . . 3 (𝜑𝐹 = (𝑥𝐷𝐵))
21fveq1d 5557 . 2 (𝜑 → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
3 fvmptd.3 . . 3 (𝜑𝐴𝐷)
4 fvmptd.2 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
53, 4csbied 3128 . . . 4 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
6 fvmptd.4 . . . 4 (𝜑𝐶𝑉)
75, 6eqeltrd 2270 . . 3 (𝜑𝐴 / 𝑥𝐵𝑉)
8 eqid 2193 . . . 4 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
98fvmpts 5636 . . 3 ((𝐴𝐷𝐴 / 𝑥𝐵𝑉) → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
103, 7, 9syl2anc 411 . 2 (𝜑 → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
112, 10, 53eqtrd 2230 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  csb 3081  cmpt 4091  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263
This theorem is referenced by:  fvmptd2  5640  fvmptdv2  5648  rdgivallem  6436  1stinl  7135  2ndinl  7136  1stinr  7137  2ndinr  7138  updjudhcoinlf  7141  updjudhcoinrg  7142  cardcl  7243  caucvgsrlemfv  7853  caucvgsrlemoffval  7858  axcaucvglemval  7959  negiso  8976  infrenegsupex  9662  iseqf1olemfvp  10584  seq3f1olemqsum  10587  infxrnegsupex  11409  climcvg1nlem  11495  isumshft  11636  mulgnngsum  13200  sraval  13936  lmfval  14371  blfvalps  14564  cdivcncfap  14783  peano4nninf  15566  peano3nninf  15567  nninfsellemeq  15574  nninfsellemeqinf  15576
  Copyright terms: Public domain W3C validator