![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptd | GIF version |
Description: Deduction version of fvmpt 5450. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptd.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
fvmptd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
fvmptd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
2 | 1 | fveq1d 5375 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
3 | fvmptd.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
4 | fvmptd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
5 | 3, 4 | csbied 3010 | . . . 4 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
6 | fvmptd.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
7 | 5, 6 | eqeltrd 2189 | . . 3 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) |
8 | eqid 2113 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
9 | 8 | fvmpts 5451 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
10 | 3, 7, 9 | syl2anc 406 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
11 | 2, 10, 5 | 3eqtrd 2149 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1312 ∈ wcel 1461 ⦋csb 2969 ↦ cmpt 3947 ‘cfv 5079 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-sbc 2877 df-csb 2970 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-iota 5044 df-fun 5081 df-fv 5087 |
This theorem is referenced by: fvmptdv2 5462 rdgivallem 6229 1stinl 6908 2ndinl 6909 1stinr 6910 2ndinr 6911 updjudhcoinlf 6914 updjudhcoinrg 6915 cardcl 6983 caucvgsrlemfv 7526 caucvgsrlemoffval 7531 axcaucvglemval 7625 negiso 8616 infrenegsupex 9284 iseqf1olemfvp 10156 seq3f1olemqsum 10159 infxrnegsupex 10917 climcvg1nlem 11003 isumshft 11144 lmfval 12197 blfvalps 12367 cdivcncfap 12566 peano4nninf 12877 peano3nninf 12878 nninfsellemeq 12887 nninfsellemeqinf 12889 |
Copyright terms: Public domain | W3C validator |