ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd GIF version

Theorem fvmptd 5638
Description: Deduction version of fvmpt 5634. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fvmptd.1 (𝜑𝐹 = (𝑥𝐷𝐵))
fvmptd.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fvmptd.3 (𝜑𝐴𝐷)
fvmptd.4 (𝜑𝐶𝑉)
Assertion
Ref Expression
fvmptd (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd
StepHypRef Expression
1 fvmptd.1 . . 3 (𝜑𝐹 = (𝑥𝐷𝐵))
21fveq1d 5556 . 2 (𝜑 → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
3 fvmptd.3 . . 3 (𝜑𝐴𝐷)
4 fvmptd.2 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
53, 4csbied 3127 . . . 4 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
6 fvmptd.4 . . . 4 (𝜑𝐶𝑉)
75, 6eqeltrd 2270 . . 3 (𝜑𝐴 / 𝑥𝐵𝑉)
8 eqid 2193 . . . 4 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
98fvmpts 5635 . . 3 ((𝐴𝐷𝐴 / 𝑥𝐵𝑉) → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
103, 7, 9syl2anc 411 . 2 (𝜑 → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
112, 10, 53eqtrd 2230 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  csb 3080  cmpt 4090  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262
This theorem is referenced by:  fvmptd2  5639  fvmptdv2  5647  rdgivallem  6434  1stinl  7133  2ndinl  7134  1stinr  7135  2ndinr  7136  updjudhcoinlf  7139  updjudhcoinrg  7140  cardcl  7241  caucvgsrlemfv  7851  caucvgsrlemoffval  7856  axcaucvglemval  7957  negiso  8974  infrenegsupex  9659  iseqf1olemfvp  10581  seq3f1olemqsum  10584  infxrnegsupex  11406  climcvg1nlem  11492  isumshft  11633  mulgnngsum  13197  sraval  13933  lmfval  14360  blfvalps  14553  cdivcncfap  14758  peano4nninf  15496  peano3nninf  15497  nninfsellemeq  15504  nninfsellemeqinf  15506
  Copyright terms: Public domain W3C validator