| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptd | GIF version | ||
| Description: Deduction version of fvmpt 5704. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptd.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
| fvmptd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| fvmptd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fvmptd | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
| 2 | 1 | fveq1d 5625 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
| 3 | fvmptd.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 4 | fvmptd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 5 | 3, 4 | csbied 3171 | . . . 4 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| 6 | fvmptd.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 7 | 5, 6 | eqeltrd 2306 | . . 3 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) |
| 8 | eqid 2229 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 9 | 8 | fvmpts 5705 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
| 10 | 3, 7, 9 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
| 11 | 2, 10, 5 | 3eqtrd 2266 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⦋csb 3124 ↦ cmpt 4144 ‘cfv 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 |
| This theorem is referenced by: fvmptd2 5709 fvmptdv2 5717 rdgivallem 6517 1stinl 7229 2ndinl 7230 1stinr 7231 2ndinr 7232 updjudhcoinlf 7235 updjudhcoinrg 7236 cardcl 7341 caucvgsrlemfv 7966 caucvgsrlemoffval 7971 axcaucvglemval 8072 negiso 9090 infrenegsupex 9777 iseqf1olemfvp 10719 seq3f1olemqsum 10722 ccatval1 11118 ccatval2 11119 infxrnegsupex 11760 climcvg1nlem 11846 isumshft 11987 mulgnngsum 13650 sraval 14386 lmfval 14851 blfvalps 15044 cdivcncfap 15263 peano4nninf 16303 peano3nninf 16304 nninfsellemeq 16311 nninfsellemeqinf 16313 |
| Copyright terms: Public domain | W3C validator |