ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domtr GIF version

Theorem domtr 6900
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
domtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domtr
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6855 . 2 Rel ≼
2 vex 2779 . . . 4 𝑦 ∈ V
32brdom 6862 . . 3 (𝑥𝑦 ↔ ∃𝑔 𝑔:𝑥1-1𝑦)
4 vex 2779 . . . 4 𝑧 ∈ V
54brdom 6862 . . 3 (𝑦𝑧 ↔ ∃𝑓 𝑓:𝑦1-1𝑧)
6 eeanv 1961 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1𝑦𝑓:𝑦1-1𝑧) ↔ (∃𝑔 𝑔:𝑥1-1𝑦 ∧ ∃𝑓 𝑓:𝑦1-1𝑧))
7 f1co 5515 . . . . . . . 8 ((𝑓:𝑦1-1𝑧𝑔:𝑥1-1𝑦) → (𝑓𝑔):𝑥1-1𝑧)
87ancoms 268 . . . . . . 7 ((𝑔:𝑥1-1𝑦𝑓:𝑦1-1𝑧) → (𝑓𝑔):𝑥1-1𝑧)
9 vex 2779 . . . . . . . . 9 𝑓 ∈ V
10 vex 2779 . . . . . . . . 9 𝑔 ∈ V
119, 10coex 5247 . . . . . . . 8 (𝑓𝑔) ∈ V
12 f1eq1 5498 . . . . . . . 8 ( = (𝑓𝑔) → (:𝑥1-1𝑧 ↔ (𝑓𝑔):𝑥1-1𝑧))
1311, 12spcev 2875 . . . . . . 7 ((𝑓𝑔):𝑥1-1𝑧 → ∃ :𝑥1-1𝑧)
148, 13syl 14 . . . . . 6 ((𝑔:𝑥1-1𝑦𝑓:𝑦1-1𝑧) → ∃ :𝑥1-1𝑧)
154brdom 6862 . . . . . 6 (𝑥𝑧 ↔ ∃ :𝑥1-1𝑧)
1614, 15sylibr 134 . . . . 5 ((𝑔:𝑥1-1𝑦𝑓:𝑦1-1𝑧) → 𝑥𝑧)
1716exlimivv 1921 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1𝑦𝑓:𝑦1-1𝑧) → 𝑥𝑧)
186, 17sylbir 135 . . 3 ((∃𝑔 𝑔:𝑥1-1𝑦 ∧ ∃𝑓 𝑓:𝑦1-1𝑧) → 𝑥𝑧)
193, 5, 18syl2anb 291 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
201, 19vtoclr 4741 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516   class class class wbr 4059  ccom 4697  1-1wf1 5287  cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-dom 6852
This theorem is referenced by:  endomtr  6905  domentr  6906  cnvct  6925  ssct  6938  nndomo  6986  infnfi  7018  xpct  12882
  Copyright terms: Public domain W3C validator