ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemdisj GIF version

Theorem recexprlemdisj 7714
Description: 𝐵 is disjoint. Lemma for recexpr 7722. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemdisj (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑥,𝑞,𝑦,𝐴   𝐵,𝑞,𝑥,𝑦

Proof of Theorem recexprlemdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltsonq 7482 . . . . . 6 <Q Or Q
2 ltrelnq 7449 . . . . . 6 <Q ⊆ (Q × Q)
31, 2son2lpi 5067 . . . . 5 ¬ ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧))
4 simprr 531 . . . . . . . . . 10 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → (*Q𝑧) ∈ (1st𝐴))
5 simplr 528 . . . . . . . . . 10 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → (*Q𝑦) ∈ (2nd𝐴))
64, 5jca 306 . . . . . . . . 9 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → ((*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)))
7 prop 7559 . . . . . . . . . . 11 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
8 prltlu 7571 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → (*Q𝑧) <Q (*Q𝑦))
97, 8syl3an1 1282 . . . . . . . . . 10 ((𝐴P ∧ (*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → (*Q𝑧) <Q (*Q𝑦))
1093expb 1206 . . . . . . . . 9 ((𝐴P ∧ ((*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴))) → (*Q𝑧) <Q (*Q𝑦))
116, 10sylan2 286 . . . . . . . 8 ((𝐴P ∧ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))) → (*Q𝑧) <Q (*Q𝑦))
12 simprl 529 . . . . . . . . . . 11 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → 𝑧 <Q 𝑞)
13 simpll 527 . . . . . . . . . . 11 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → 𝑞 <Q 𝑦)
141, 2sotri 5066 . . . . . . . . . . 11 ((𝑧 <Q 𝑞𝑞 <Q 𝑦) → 𝑧 <Q 𝑦)
1512, 13, 14syl2anc 411 . . . . . . . . . 10 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
16 ltrnqi 7505 . . . . . . . . . 10 (𝑧 <Q 𝑦 → (*Q𝑦) <Q (*Q𝑧))
1715, 16syl 14 . . . . . . . . 9 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → (*Q𝑦) <Q (*Q𝑧))
1817adantl 277 . . . . . . . 8 ((𝐴P ∧ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))) → (*Q𝑦) <Q (*Q𝑧))
1911, 18jca 306 . . . . . . 7 ((𝐴P ∧ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))) → ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧)))
2019ex 115 . . . . . 6 (𝐴P → (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧))))
2120adantr 276 . . . . 5 ((𝐴P𝑞Q) → (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧))))
223, 21mtoi 665 . . . 4 ((𝐴P𝑞Q) → ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
2322alrimivv 1889 . . 3 ((𝐴P𝑞Q) → ∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
24 recexpr.1 . . . . . . . . 9 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
2524recexprlemell 7706 . . . . . . . 8 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
2624recexprlemelu 7707 . . . . . . . 8 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
2725, 26anbi12i 460 . . . . . . 7 ((𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴))))
28 breq1 4037 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 <Q 𝑞𝑧 <Q 𝑞))
29 fveq2 5561 . . . . . . . . . . 11 (𝑦 = 𝑧 → (*Q𝑦) = (*Q𝑧))
3029eleq1d 2265 . . . . . . . . . 10 (𝑦 = 𝑧 → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q𝑧) ∈ (1st𝐴)))
3128, 30anbi12d 473 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3231cbvexv 1933 . . . . . . . 8 (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))
3332anbi2i 457 . . . . . . 7 ((∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴))) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3427, 33bitri 184 . . . . . 6 ((𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
35 eeanv 1951 . . . . . 6 (∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3634, 35bitr4i 187 . . . . 5 ((𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3736notbii 669 . . . 4 (¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ ¬ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
38 alnex 1513 . . . . . 6 (∀𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ¬ ∃𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3938albii 1484 . . . . 5 (∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ∀𝑦 ¬ ∃𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
40 alnex 1513 . . . . 5 (∀𝑦 ¬ ∃𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ¬ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
4139, 40bitri 184 . . . 4 (∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ¬ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
4237, 41bitr4i 187 . . 3 (¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ ∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
4323, 42sylibr 134 . 2 ((𝐴P𝑞Q) → ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
4443ralrimiva 2570 1 (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1362   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wral 2475  cop 3626   class class class wbr 4034  cfv 5259  1st c1st 6205  2nd c2nd 6206  Qcnq 7364  *Qcrq 7368   <Q cltq 7369  Pcnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-mi 7390  df-lti 7391  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-inp 7550
This theorem is referenced by:  recexprlempr  7716
  Copyright terms: Public domain W3C validator