| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltsonq 7465 | 
. . . . . 6
⊢ 
<Q Or Q | 
| 2 |   | ltrelnq 7432 | 
. . . . . 6
⊢ 
<Q ⊆ (Q ×
Q) | 
| 3 | 1, 2 | son2lpi 5066 | 
. . . . 5
⊢  ¬
((*Q‘𝑧) <Q
(*Q‘𝑦) ∧
(*Q‘𝑦) <Q
(*Q‘𝑧)) | 
| 4 |   | simprr 531 | 
. . . . . . . . . 10
⊢ (((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) →
(*Q‘𝑧) ∈ (1st ‘𝐴)) | 
| 5 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) →
(*Q‘𝑦) ∈ (2nd ‘𝐴)) | 
| 6 | 4, 5 | jca 306 | 
. . . . . . . . 9
⊢ (((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) →
((*Q‘𝑧) ∈ (1st ‘𝐴) ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) | 
| 7 |   | prop 7542 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 8 |   | prltlu 7554 | 
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧
(*Q‘𝑧) ∈ (1st ‘𝐴) ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) →
(*Q‘𝑧) <Q
(*Q‘𝑦)) | 
| 9 | 7, 8 | syl3an1 1282 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
(*Q‘𝑧) ∈ (1st ‘𝐴) ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) →
(*Q‘𝑧) <Q
(*Q‘𝑦)) | 
| 10 | 9 | 3expb 1206 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
((*Q‘𝑧) ∈ (1st ‘𝐴) ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) →
(*Q‘𝑧) <Q
(*Q‘𝑦)) | 
| 11 | 6, 10 | sylan2 286 | 
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) →
(*Q‘𝑧) <Q
(*Q‘𝑦)) | 
| 12 |   | simprl 529 | 
. . . . . . . . . . 11
⊢ (((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) → 𝑧 <Q 𝑞) | 
| 13 |   | simpll 527 | 
. . . . . . . . . . 11
⊢ (((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) → 𝑞 <Q 𝑦) | 
| 14 | 1, 2 | sotri 5065 | 
. . . . . . . . . . 11
⊢ ((𝑧 <Q
𝑞 ∧ 𝑞 <Q 𝑦) → 𝑧 <Q 𝑦) | 
| 15 | 12, 13, 14 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) → 𝑧 <Q 𝑦) | 
| 16 |   | ltrnqi 7488 | 
. . . . . . . . . 10
⊢ (𝑧 <Q
𝑦 →
(*Q‘𝑦) <Q
(*Q‘𝑧)) | 
| 17 | 15, 16 | syl 14 | 
. . . . . . . . 9
⊢ (((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) →
(*Q‘𝑦) <Q
(*Q‘𝑧)) | 
| 18 | 17 | adantl 277 | 
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) →
(*Q‘𝑦) <Q
(*Q‘𝑧)) | 
| 19 | 11, 18 | jca 306 | 
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) →
((*Q‘𝑧) <Q
(*Q‘𝑦) ∧
(*Q‘𝑦) <Q
(*Q‘𝑧))) | 
| 20 | 19 | ex 115 | 
. . . . . 6
⊢ (𝐴 ∈ P →
(((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) →
((*Q‘𝑧) <Q
(*Q‘𝑦) ∧
(*Q‘𝑦) <Q
(*Q‘𝑧)))) | 
| 21 | 20 | adantr 276 | 
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝑞 ∈ Q)
→ (((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) →
((*Q‘𝑧) <Q
(*Q‘𝑦) ∧
(*Q‘𝑦) <Q
(*Q‘𝑧)))) | 
| 22 | 3, 21 | mtoi 665 | 
. . . 4
⊢ ((𝐴 ∈ P ∧
𝑞 ∈ Q)
→ ¬ ((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 23 | 22 | alrimivv 1889 | 
. . 3
⊢ ((𝐴 ∈ P ∧
𝑞 ∈ Q)
→ ∀𝑦∀𝑧 ¬ ((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 24 |   | recexpr.1 | 
. . . . . . . . 9
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | 
| 25 | 24 | recexprlemell 7689 | 
. . . . . . . 8
⊢ (𝑞 ∈ (1st
‘𝐵) ↔
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) | 
| 26 | 24 | recexprlemelu 7690 | 
. . . . . . . 8
⊢ (𝑞 ∈ (2nd
‘𝐵) ↔
∃𝑦(𝑦 <Q 𝑞 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))) | 
| 27 | 25, 26 | anbi12i 460 | 
. . . . . . 7
⊢ ((𝑞 ∈ (1st
‘𝐵) ∧ 𝑞 ∈ (2nd
‘𝐵)) ↔
(∃𝑦(𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ ∃𝑦(𝑦 <Q 𝑞 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) | 
| 28 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 <Q 𝑞 ↔ 𝑧 <Q 𝑞)) | 
| 29 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 →
(*Q‘𝑦) = (*Q‘𝑧)) | 
| 30 | 29 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 →
((*Q‘𝑦) ∈ (1st ‘𝐴) ↔
(*Q‘𝑧) ∈ (1st ‘𝐴))) | 
| 31 | 28, 30 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝑦 <Q 𝑞 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) ↔ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 32 | 31 | cbvexv 1933 | 
. . . . . . . 8
⊢
(∃𝑦(𝑦 <Q
𝑞 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) ↔ ∃𝑧(𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) | 
| 33 | 32 | anbi2i 457 | 
. . . . . . 7
⊢
((∃𝑦(𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ ∃𝑦(𝑦 <Q 𝑞 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 34 | 27, 33 | bitri 184 | 
. . . . . 6
⊢ ((𝑞 ∈ (1st
‘𝐵) ∧ 𝑞 ∈ (2nd
‘𝐵)) ↔
(∃𝑦(𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 35 |   | eeanv 1951 | 
. . . . . 6
⊢
(∃𝑦∃𝑧((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 36 | 34, 35 | bitr4i 187 | 
. . . . 5
⊢ ((𝑞 ∈ (1st
‘𝐵) ∧ 𝑞 ∈ (2nd
‘𝐵)) ↔
∃𝑦∃𝑧((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 37 | 36 | notbii 669 | 
. . . 4
⊢ (¬
(𝑞 ∈ (1st
‘𝐵) ∧ 𝑞 ∈ (2nd
‘𝐵)) ↔ ¬
∃𝑦∃𝑧((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 38 |   | alnex 1513 | 
. . . . . 6
⊢
(∀𝑧 ¬
((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) ↔ ¬ ∃𝑧((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 39 | 38 | albii 1484 | 
. . . . 5
⊢
(∀𝑦∀𝑧 ¬ ((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) ↔ ∀𝑦 ¬ ∃𝑧((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 40 |   | alnex 1513 | 
. . . . 5
⊢
(∀𝑦 ¬
∃𝑧((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) ↔ ¬ ∃𝑦∃𝑧((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 41 | 39, 40 | bitri 184 | 
. . . 4
⊢
(∀𝑦∀𝑧 ¬ ((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴))) ↔ ¬ ∃𝑦∃𝑧((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 42 | 37, 41 | bitr4i 187 | 
. . 3
⊢ (¬
(𝑞 ∈ (1st
‘𝐵) ∧ 𝑞 ∈ (2nd
‘𝐵)) ↔
∀𝑦∀𝑧 ¬ ((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ∧ (𝑧 <Q 𝑞 ∧
(*Q‘𝑧) ∈ (1st ‘𝐴)))) | 
| 43 | 23, 42 | sylibr 134 | 
. 2
⊢ ((𝐴 ∈ P ∧
𝑞 ∈ Q)
→ ¬ (𝑞 ∈
(1st ‘𝐵)
∧ 𝑞 ∈
(2nd ‘𝐵))) | 
| 44 | 43 | ralrimiva 2570 | 
1
⊢ (𝐴 ∈ P →
∀𝑞 ∈
Q ¬ (𝑞
∈ (1st ‘𝐵) ∧ 𝑞 ∈ (2nd ‘𝐵))) |