ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemdisj GIF version

Theorem recexprlemdisj 7742
Description: 𝐵 is disjoint. Lemma for recexpr 7750. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemdisj (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑥,𝑞,𝑦,𝐴   𝐵,𝑞,𝑥,𝑦

Proof of Theorem recexprlemdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltsonq 7510 . . . . . 6 <Q Or Q
2 ltrelnq 7477 . . . . . 6 <Q ⊆ (Q × Q)
31, 2son2lpi 5078 . . . . 5 ¬ ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧))
4 simprr 531 . . . . . . . . . 10 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → (*Q𝑧) ∈ (1st𝐴))
5 simplr 528 . . . . . . . . . 10 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → (*Q𝑦) ∈ (2nd𝐴))
64, 5jca 306 . . . . . . . . 9 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → ((*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)))
7 prop 7587 . . . . . . . . . . 11 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
8 prltlu 7599 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → (*Q𝑧) <Q (*Q𝑦))
97, 8syl3an1 1282 . . . . . . . . . 10 ((𝐴P ∧ (*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → (*Q𝑧) <Q (*Q𝑦))
1093expb 1206 . . . . . . . . 9 ((𝐴P ∧ ((*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴))) → (*Q𝑧) <Q (*Q𝑦))
116, 10sylan2 286 . . . . . . . 8 ((𝐴P ∧ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))) → (*Q𝑧) <Q (*Q𝑦))
12 simprl 529 . . . . . . . . . . 11 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → 𝑧 <Q 𝑞)
13 simpll 527 . . . . . . . . . . 11 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → 𝑞 <Q 𝑦)
141, 2sotri 5077 . . . . . . . . . . 11 ((𝑧 <Q 𝑞𝑞 <Q 𝑦) → 𝑧 <Q 𝑦)
1512, 13, 14syl2anc 411 . . . . . . . . . 10 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
16 ltrnqi 7533 . . . . . . . . . 10 (𝑧 <Q 𝑦 → (*Q𝑦) <Q (*Q𝑧))
1715, 16syl 14 . . . . . . . . 9 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → (*Q𝑦) <Q (*Q𝑧))
1817adantl 277 . . . . . . . 8 ((𝐴P ∧ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))) → (*Q𝑦) <Q (*Q𝑧))
1911, 18jca 306 . . . . . . 7 ((𝐴P ∧ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))) → ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧)))
2019ex 115 . . . . . 6 (𝐴P → (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧))))
2120adantr 276 . . . . 5 ((𝐴P𝑞Q) → (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧))))
223, 21mtoi 665 . . . 4 ((𝐴P𝑞Q) → ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
2322alrimivv 1897 . . 3 ((𝐴P𝑞Q) → ∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
24 recexpr.1 . . . . . . . . 9 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
2524recexprlemell 7734 . . . . . . . 8 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
2624recexprlemelu 7735 . . . . . . . 8 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
2725, 26anbi12i 460 . . . . . . 7 ((𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴))))
28 breq1 4046 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 <Q 𝑞𝑧 <Q 𝑞))
29 fveq2 5575 . . . . . . . . . . 11 (𝑦 = 𝑧 → (*Q𝑦) = (*Q𝑧))
3029eleq1d 2273 . . . . . . . . . 10 (𝑦 = 𝑧 → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q𝑧) ∈ (1st𝐴)))
3128, 30anbi12d 473 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3231cbvexv 1941 . . . . . . . 8 (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))
3332anbi2i 457 . . . . . . 7 ((∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴))) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3427, 33bitri 184 . . . . . 6 ((𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
35 eeanv 1959 . . . . . 6 (∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3634, 35bitr4i 187 . . . . 5 ((𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3736notbii 669 . . . 4 (¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ ¬ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
38 alnex 1521 . . . . . 6 (∀𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ¬ ∃𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3938albii 1492 . . . . 5 (∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ∀𝑦 ¬ ∃𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
40 alnex 1521 . . . . 5 (∀𝑦 ¬ ∃𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ¬ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
4139, 40bitri 184 . . . 4 (∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ¬ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
4237, 41bitr4i 187 . . 3 (¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ ∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
4323, 42sylibr 134 . 2 ((𝐴P𝑞Q) → ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
4443ralrimiva 2578 1 (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1370   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wral 2483  cop 3635   class class class wbr 4043  cfv 5270  1st c1st 6223  2nd c2nd 6224  Qcnq 7392  *Qcrq 7396   <Q cltq 7397  Pcnp 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-mi 7418  df-lti 7419  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-inp 7578
This theorem is referenced by:  recexprlempr  7744
  Copyright terms: Public domain W3C validator