ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemdisj GIF version

Theorem recexprlemdisj 7462
Description: 𝐵 is disjoint. Lemma for recexpr 7470. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemdisj (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑥,𝑞,𝑦,𝐴   𝐵,𝑞,𝑥,𝑦

Proof of Theorem recexprlemdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltsonq 7230 . . . . . 6 <Q Or Q
2 ltrelnq 7197 . . . . . 6 <Q ⊆ (Q × Q)
31, 2son2lpi 4943 . . . . 5 ¬ ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧))
4 simprr 522 . . . . . . . . . 10 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → (*Q𝑧) ∈ (1st𝐴))
5 simplr 520 . . . . . . . . . 10 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → (*Q𝑦) ∈ (2nd𝐴))
64, 5jca 304 . . . . . . . . 9 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → ((*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)))
7 prop 7307 . . . . . . . . . . 11 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
8 prltlu 7319 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → (*Q𝑧) <Q (*Q𝑦))
97, 8syl3an1 1250 . . . . . . . . . 10 ((𝐴P ∧ (*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → (*Q𝑧) <Q (*Q𝑦))
1093expb 1183 . . . . . . . . 9 ((𝐴P ∧ ((*Q𝑧) ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴))) → (*Q𝑧) <Q (*Q𝑦))
116, 10sylan2 284 . . . . . . . 8 ((𝐴P ∧ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))) → (*Q𝑧) <Q (*Q𝑦))
12 simprl 521 . . . . . . . . . . 11 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → 𝑧 <Q 𝑞)
13 simpll 519 . . . . . . . . . . 11 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → 𝑞 <Q 𝑦)
141, 2sotri 4942 . . . . . . . . . . 11 ((𝑧 <Q 𝑞𝑞 <Q 𝑦) → 𝑧 <Q 𝑦)
1512, 13, 14syl2anc 409 . . . . . . . . . 10 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
16 ltrnqi 7253 . . . . . . . . . 10 (𝑧 <Q 𝑦 → (*Q𝑦) <Q (*Q𝑧))
1715, 16syl 14 . . . . . . . . 9 (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → (*Q𝑦) <Q (*Q𝑧))
1817adantl 275 . . . . . . . 8 ((𝐴P ∧ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))) → (*Q𝑦) <Q (*Q𝑧))
1911, 18jca 304 . . . . . . 7 ((𝐴P ∧ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))) → ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧)))
2019ex 114 . . . . . 6 (𝐴P → (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧))))
2120adantr 274 . . . . 5 ((𝐴P𝑞Q) → (((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) → ((*Q𝑧) <Q (*Q𝑦) ∧ (*Q𝑦) <Q (*Q𝑧))))
223, 21mtoi 654 . . . 4 ((𝐴P𝑞Q) → ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
2322alrimivv 1848 . . 3 ((𝐴P𝑞Q) → ∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
24 recexpr.1 . . . . . . . . 9 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
2524recexprlemell 7454 . . . . . . . 8 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
2624recexprlemelu 7455 . . . . . . . 8 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
2725, 26anbi12i 456 . . . . . . 7 ((𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴))))
28 breq1 3940 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 <Q 𝑞𝑧 <Q 𝑞))
29 fveq2 5429 . . . . . . . . . . 11 (𝑦 = 𝑧 → (*Q𝑦) = (*Q𝑧))
3029eleq1d 2209 . . . . . . . . . 10 (𝑦 = 𝑧 → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q𝑧) ∈ (1st𝐴)))
3128, 30anbi12d 465 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3231cbvexv 1891 . . . . . . . 8 (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴)))
3332anbi2i 453 . . . . . . 7 ((∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴))) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3427, 33bitri 183 . . . . . 6 ((𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
35 eeanv 1905 . . . . . 6 (∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ ∃𝑧(𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3634, 35bitr4i 186 . . . . 5 ((𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3736notbii 658 . . . 4 (¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ ¬ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
38 alnex 1476 . . . . . 6 (∀𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ¬ ∃𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
3938albii 1447 . . . . 5 (∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ∀𝑦 ¬ ∃𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
40 alnex 1476 . . . . 5 (∀𝑦 ¬ ∃𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ¬ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
4139, 40bitri 183 . . . 4 (∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))) ↔ ¬ ∃𝑦𝑧((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
4237, 41bitr4i 186 . . 3 (¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ↔ ∀𝑦𝑧 ¬ ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ∧ (𝑧 <Q 𝑞 ∧ (*Q𝑧) ∈ (1st𝐴))))
4323, 42sylibr 133 . 2 ((𝐴P𝑞Q) → ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
4443ralrimiva 2508 1 (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1330   = wceq 1332  wex 1469  wcel 1481  {cab 2126  wral 2417  cop 3535   class class class wbr 3937  cfv 5131  1st c1st 6044  2nd c2nd 6045  Qcnq 7112  *Qcrq 7116   <Q cltq 7117  Pcnp 7123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-lti 7139  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298
This theorem is referenced by:  recexprlempr  7464
  Copyright terms: Public domain W3C validator