ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unen GIF version

Theorem unen 6463
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
unen (((𝐴𝐵𝐶𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem unen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6394 . . 3 (𝐴𝐵 ↔ ∃𝑥 𝑥:𝐴1-1-onto𝐵)
2 bren 6394 . . 3 (𝐶𝐷 ↔ ∃𝑦 𝑦:𝐶1-1-onto𝐷)
3 eeanv 1850 . . . 4 (∃𝑥𝑦(𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) ↔ (∃𝑥 𝑥:𝐴1-1-onto𝐵 ∧ ∃𝑦 𝑦:𝐶1-1-onto𝐷))
4 vex 2615 . . . . . . . 8 𝑥 ∈ V
5 vex 2615 . . . . . . . 8 𝑦 ∈ V
64, 5unex 4230 . . . . . . 7 (𝑥𝑦) ∈ V
7 f1oun 5221 . . . . . . 7 (((𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝑥𝑦):(𝐴𝐶)–1-1-onto→(𝐵𝐷))
8 f1oen3g 6401 . . . . . . 7 (((𝑥𝑦) ∈ V ∧ (𝑥𝑦):(𝐴𝐶)–1-1-onto→(𝐵𝐷)) → (𝐴𝐶) ≈ (𝐵𝐷))
96, 7, 8sylancr 405 . . . . . 6 (((𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))
109ex 113 . . . . 5 ((𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
1110exlimivv 1819 . . . 4 (∃𝑥𝑦(𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
123, 11sylbir 133 . . 3 ((∃𝑥 𝑥:𝐴1-1-onto𝐵 ∧ ∃𝑦 𝑦:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
131, 2, 12syl2anb 285 . 2 ((𝐴𝐵𝐶𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
1413imp 122 1 (((𝐴𝐵𝐶𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wex 1422  wcel 1434  Vcvv 2612  cun 2982  cin 2983  c0 3269   class class class wbr 3811  1-1-ontowf1o 4968  cen 6385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-en 6388
This theorem is referenced by:  phplem2  6499  fiunsnnn  6527  unsnfi  6556  pm54.43  6721  frecfzennn  9722  unennn  10990
  Copyright terms: Public domain W3C validator