Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unen | GIF version |
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
unen | ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6685 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑥 𝑥:𝐴–1-1-onto→𝐵) | |
2 | bren 6685 | . . 3 ⊢ (𝐶 ≈ 𝐷 ↔ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) | |
3 | eeanv 1912 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ↔ (∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷)) | |
4 | vex 2715 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 2715 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | unex 4399 | . . . . . . 7 ⊢ (𝑥 ∪ 𝑦) ∈ V |
7 | f1oun 5431 | . . . . . . 7 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) | |
8 | f1oen3g 6692 | . . . . . . 7 ⊢ (((𝑥 ∪ 𝑦) ∈ V ∧ (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
9 | 6, 7, 8 | sylancr 411 | . . . . . 6 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
10 | 9 | ex 114 | . . . . 5 ⊢ ((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
11 | 10 | exlimivv 1876 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
12 | 3, 11 | sylbir 134 | . . 3 ⊢ ((∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
13 | 1, 2, 12 | syl2anb 289 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
14 | 13 | imp 123 | 1 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∃wex 1472 ∈ wcel 2128 Vcvv 2712 ∪ cun 3100 ∩ cin 3101 ∅c0 3394 class class class wbr 3965 –1-1-onto→wf1o 5166 ≈ cen 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-en 6679 |
This theorem is referenced by: enpr2d 6755 phplem2 6791 fiunsnnn 6819 unsnfi 6856 endjusym 7030 pm54.43 7108 endjudisj 7128 djuen 7129 frecfzennn 10307 unennn 12098 |
Copyright terms: Public domain | W3C validator |