ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemreseldju GIF version

Theorem exmidfodomrlemreseldju 7177
Description: Lemma for exmidfodomrlemrALT 7180. A variant of eldju 7045. (Contributed by Jim Kingdon, 9-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemreseldju.a (𝜑𝐴 ⊆ 1o)
exmidfodomrlemreseldju.el (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
Assertion
Ref Expression
exmidfodomrlemreseldju (𝜑 → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))

Proof of Theorem exmidfodomrlemreseldju
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemreseldju.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ 1o)
21sselda 3147 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ 1o)
3 el1o 6416 . . . . . . . . . 10 (𝑥 ∈ 1o𝑥 = ∅)
42, 3sylib 121 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 = ∅)
54fveq2d 5500 . . . . . . . 8 ((𝜑𝑥𝐴) → ((inl ↾ 𝐴)‘𝑥) = ((inl ↾ 𝐴)‘∅))
65eqeq2d 2182 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐵 = ((inl ↾ 𝐴)‘∅)))
7 simpr 109 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
84, 7eqeltrrd 2248 . . . . . . . 8 ((𝜑𝑥𝐴) → ∅ ∈ 𝐴)
98biantrurd 303 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘∅) ↔ (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
106, 9bitrd 187 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) ↔ (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
1110biimpd 143 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) → (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
1211rexlimdva 2587 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) → (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
1312imp 123 . . 3 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥)) → (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)))
1413orcd 728 . 2 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥)) → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
15 simpr 109 . . . . . . . . 9 ((𝜑𝑥 ∈ 1o) → 𝑥 ∈ 1o)
1615, 3sylib 121 . . . . . . . 8 ((𝜑𝑥 ∈ 1o) → 𝑥 = ∅)
1716fveq2d 5500 . . . . . . 7 ((𝜑𝑥 ∈ 1o) → ((inr ↾ 1o)‘𝑥) = ((inr ↾ 1o)‘∅))
1817eqeq2d 2182 . . . . . 6 ((𝜑𝑥 ∈ 1o) → (𝐵 = ((inr ↾ 1o)‘𝑥) ↔ 𝐵 = ((inr ↾ 1o)‘∅)))
1918biimpd 143 . . . . 5 ((𝜑𝑥 ∈ 1o) → (𝐵 = ((inr ↾ 1o)‘𝑥) → 𝐵 = ((inr ↾ 1o)‘∅)))
2019rexlimdva 2587 . . . 4 (𝜑 → (∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥) → 𝐵 = ((inr ↾ 1o)‘∅)))
2120imp 123 . . 3 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)) → 𝐵 = ((inr ↾ 1o)‘∅))
2221olcd 729 . 2 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)) → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
23 exmidfodomrlemreseldju.el . . 3 (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
24 eldju 7045 . . 3 (𝐵 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)))
2523, 24sylib 121 . 2 (𝜑 → (∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)))
2614, 22, 25mpjaodan 793 1 (𝜑 → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141  wrex 2449  wss 3121  c0 3414  cres 4613  cfv 5198  1oc1o 6388  cdju 7014  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  exmidfodomrlemrALT  7180
  Copyright terms: Public domain W3C validator