ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemreseldju GIF version

Theorem exmidfodomrlemreseldju 7339
Description: Lemma for exmidfodomrlemrALT 7342. A variant of eldju 7196. (Contributed by Jim Kingdon, 9-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemreseldju.a (𝜑𝐴 ⊆ 1o)
exmidfodomrlemreseldju.el (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
Assertion
Ref Expression
exmidfodomrlemreseldju (𝜑 → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))

Proof of Theorem exmidfodomrlemreseldju
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemreseldju.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ 1o)
21sselda 3201 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ 1o)
3 el1o 6546 . . . . . . . . . 10 (𝑥 ∈ 1o𝑥 = ∅)
42, 3sylib 122 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 = ∅)
54fveq2d 5603 . . . . . . . 8 ((𝜑𝑥𝐴) → ((inl ↾ 𝐴)‘𝑥) = ((inl ↾ 𝐴)‘∅))
65eqeq2d 2219 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐵 = ((inl ↾ 𝐴)‘∅)))
7 simpr 110 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
84, 7eqeltrrd 2285 . . . . . . . 8 ((𝜑𝑥𝐴) → ∅ ∈ 𝐴)
98biantrurd 305 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘∅) ↔ (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
106, 9bitrd 188 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) ↔ (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
1110biimpd 144 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) → (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
1211rexlimdva 2625 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) → (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
1312imp 124 . . 3 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥)) → (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)))
1413orcd 735 . 2 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥)) → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
15 simpr 110 . . . . . . . . 9 ((𝜑𝑥 ∈ 1o) → 𝑥 ∈ 1o)
1615, 3sylib 122 . . . . . . . 8 ((𝜑𝑥 ∈ 1o) → 𝑥 = ∅)
1716fveq2d 5603 . . . . . . 7 ((𝜑𝑥 ∈ 1o) → ((inr ↾ 1o)‘𝑥) = ((inr ↾ 1o)‘∅))
1817eqeq2d 2219 . . . . . 6 ((𝜑𝑥 ∈ 1o) → (𝐵 = ((inr ↾ 1o)‘𝑥) ↔ 𝐵 = ((inr ↾ 1o)‘∅)))
1918biimpd 144 . . . . 5 ((𝜑𝑥 ∈ 1o) → (𝐵 = ((inr ↾ 1o)‘𝑥) → 𝐵 = ((inr ↾ 1o)‘∅)))
2019rexlimdva 2625 . . . 4 (𝜑 → (∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥) → 𝐵 = ((inr ↾ 1o)‘∅)))
2120imp 124 . . 3 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)) → 𝐵 = ((inr ↾ 1o)‘∅))
2221olcd 736 . 2 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)) → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
23 exmidfodomrlemreseldju.el . . 3 (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
24 eldju 7196 . . 3 (𝐵 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)))
2523, 24sylib 122 . 2 (𝜑 → (∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)))
2614, 22, 25mpjaodan 800 1 (𝜑 → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wcel 2178  wrex 2487  wss 3174  c0 3468  cres 4695  cfv 5290  1oc1o 6518  cdju 7165  inlcinl 7173  inrcinr 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by:  exmidfodomrlemrALT  7342
  Copyright terms: Public domain W3C validator