ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemreseldju GIF version

Theorem exmidfodomrlemreseldju 7378
Description: Lemma for exmidfodomrlemrALT 7381. A variant of eldju 7235. (Contributed by Jim Kingdon, 9-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemreseldju.a (𝜑𝐴 ⊆ 1o)
exmidfodomrlemreseldju.el (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
Assertion
Ref Expression
exmidfodomrlemreseldju (𝜑 → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))

Proof of Theorem exmidfodomrlemreseldju
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemreseldju.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ 1o)
21sselda 3224 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ 1o)
3 el1o 6583 . . . . . . . . . 10 (𝑥 ∈ 1o𝑥 = ∅)
42, 3sylib 122 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 = ∅)
54fveq2d 5631 . . . . . . . 8 ((𝜑𝑥𝐴) → ((inl ↾ 𝐴)‘𝑥) = ((inl ↾ 𝐴)‘∅))
65eqeq2d 2241 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐵 = ((inl ↾ 𝐴)‘∅)))
7 simpr 110 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
84, 7eqeltrrd 2307 . . . . . . . 8 ((𝜑𝑥𝐴) → ∅ ∈ 𝐴)
98biantrurd 305 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘∅) ↔ (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
106, 9bitrd 188 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) ↔ (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
1110biimpd 144 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) → (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
1211rexlimdva 2648 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) → (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅))))
1312imp 124 . . 3 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥)) → (∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)))
1413orcd 738 . 2 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥)) → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
15 simpr 110 . . . . . . . . 9 ((𝜑𝑥 ∈ 1o) → 𝑥 ∈ 1o)
1615, 3sylib 122 . . . . . . . 8 ((𝜑𝑥 ∈ 1o) → 𝑥 = ∅)
1716fveq2d 5631 . . . . . . 7 ((𝜑𝑥 ∈ 1o) → ((inr ↾ 1o)‘𝑥) = ((inr ↾ 1o)‘∅))
1817eqeq2d 2241 . . . . . 6 ((𝜑𝑥 ∈ 1o) → (𝐵 = ((inr ↾ 1o)‘𝑥) ↔ 𝐵 = ((inr ↾ 1o)‘∅)))
1918biimpd 144 . . . . 5 ((𝜑𝑥 ∈ 1o) → (𝐵 = ((inr ↾ 1o)‘𝑥) → 𝐵 = ((inr ↾ 1o)‘∅)))
2019rexlimdva 2648 . . . 4 (𝜑 → (∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥) → 𝐵 = ((inr ↾ 1o)‘∅)))
2120imp 124 . . 3 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)) → 𝐵 = ((inr ↾ 1o)‘∅))
2221olcd 739 . 2 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)) → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
23 exmidfodomrlemreseldju.el . . 3 (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
24 eldju 7235 . . 3 (𝐵 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)))
2523, 24sylib 122 . 2 (𝜑 → (∃𝑥𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)))
2614, 22, 25mpjaodan 803 1 (𝜑 → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  wrex 2509  wss 3197  c0 3491  cres 4721  cfv 5318  1oc1o 6555  cdju 7204  inlcinl 7212  inrcinr 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-dju 7205  df-inl 7214  df-inr 7215
This theorem is referenced by:  exmidfodomrlemrALT  7381
  Copyright terms: Public domain W3C validator