Step | Hyp | Ref
| Expression |
1 | | exmidfodomrlemreseldju.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 1o) |
2 | 1 | sselda 3147 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 1o) |
3 | | el1o 6416 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 1o ↔
𝑥 =
∅) |
4 | 2, 3 | sylib 121 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = ∅) |
5 | 4 | fveq2d 5500 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((inl ↾ 𝐴)‘𝑥) = ((inl ↾ 𝐴)‘∅)) |
6 | 5 | eqeq2d 2182 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐵 = ((inl ↾ 𝐴)‘∅))) |
7 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
8 | 4, 7 | eqeltrrd 2248 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∅ ∈ 𝐴) |
9 | 8 | biantrurd 303 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = ((inl ↾ 𝐴)‘∅) ↔ (∅ ∈
𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)))) |
10 | 6, 9 | bitrd 187 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) ↔ (∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)))) |
11 | 10 | biimpd 143 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = ((inl ↾ 𝐴)‘𝑥) → (∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)))) |
12 | 11 | rexlimdva 2587 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) → (∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)))) |
13 | 12 | imp 123 |
. . 3
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥)) → (∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅))) |
14 | 13 | orcd 728 |
. 2
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥)) → ((∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾
1o)‘∅))) |
15 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → 𝑥 ∈
1o) |
16 | 15, 3 | sylib 121 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → 𝑥 = ∅) |
17 | 16 | fveq2d 5500 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → ((inr ↾
1o)‘𝑥) =
((inr ↾ 1o)‘∅)) |
18 | 17 | eqeq2d 2182 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → (𝐵 = ((inr ↾
1o)‘𝑥)
↔ 𝐵 = ((inr ↾
1o)‘∅))) |
19 | 18 | biimpd 143 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → (𝐵 = ((inr ↾
1o)‘𝑥)
→ 𝐵 = ((inr ↾
1o)‘∅))) |
20 | 19 | rexlimdva 2587 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥) → 𝐵 = ((inr ↾
1o)‘∅))) |
21 | 20 | imp 123 |
. . 3
⊢ ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)) → 𝐵 = ((inr ↾
1o)‘∅)) |
22 | 21 | olcd 729 |
. 2
⊢ ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥)) → ((∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾
1o)‘∅))) |
23 | | exmidfodomrlemreseldju.el |
. . 3
⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) |
24 | | eldju 7045 |
. . 3
⊢ (𝐵 ∈ (𝐴 ⊔ 1o) ↔
(∃𝑥 ∈ 𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥))) |
25 | 23, 24 | sylib 121 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = ((inr ↾ 1o)‘𝑥))) |
26 | 14, 22, 25 | mpjaodan 793 |
1
⊢ (𝜑 → ((∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾
1o)‘∅))) |