ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemeldju GIF version

Theorem exmidfodomrlemeldju 6886
Description: Lemma for exmidfodomr 6891. A variant of djur 6811. (Contributed by Jim Kingdon, 2-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemeldju.a (𝜑𝐴 ⊆ 1o)
exmidfodomrlemeldju.el (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
Assertion
Ref Expression
exmidfodomrlemeldju (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))

Proof of Theorem exmidfodomrlemeldju
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemeldju.a . . . . . . . . . 10 (𝜑𝐴 ⊆ 1o)
21sselda 3026 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ 1o)
3 el1o 6215 . . . . . . . . 9 (𝑥 ∈ 1o𝑥 = ∅)
42, 3sylib 121 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 = ∅)
54fveq2d 5322 . . . . . . 7 ((𝜑𝑥𝐴) → (inl‘𝑥) = (inl‘∅))
65eqeq2d 2100 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 = (inl‘𝑥) ↔ 𝐵 = (inl‘∅)))
76biimpd 143 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 = (inl‘𝑥) → 𝐵 = (inl‘∅)))
87rexlimdva 2490 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵 = (inl‘𝑥) → 𝐵 = (inl‘∅)))
98imp 123 . . 3 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = (inl‘𝑥)) → 𝐵 = (inl‘∅))
109orcd 688 . 2 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = (inl‘𝑥)) → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))
11 simpr 109 . . . . . . . . 9 ((𝜑𝑥 ∈ 1o) → 𝑥 ∈ 1o)
1211, 3sylib 121 . . . . . . . 8 ((𝜑𝑥 ∈ 1o) → 𝑥 = ∅)
1312fveq2d 5322 . . . . . . 7 ((𝜑𝑥 ∈ 1o) → (inr‘𝑥) = (inr‘∅))
1413eqeq2d 2100 . . . . . 6 ((𝜑𝑥 ∈ 1o) → (𝐵 = (inr‘𝑥) ↔ 𝐵 = (inr‘∅)))
1514biimpd 143 . . . . 5 ((𝜑𝑥 ∈ 1o) → (𝐵 = (inr‘𝑥) → 𝐵 = (inr‘∅)))
1615rexlimdva 2490 . . . 4 (𝜑 → (∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥) → 𝐵 = (inr‘∅)))
1716imp 123 . . 3 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)) → 𝐵 = (inr‘∅))
1817olcd 689 . 2 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)) → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))
19 exmidfodomrlemeldju.el . . 3 (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
20 djur 6811 . . 3 (𝐵 ∈ (𝐴 ⊔ 1o) → (∃𝑥𝐴 𝐵 = (inl‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)))
2119, 20syl 14 . 2 (𝜑 → (∃𝑥𝐴 𝐵 = (inl‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)))
2210, 18, 21mpjaodan 748 1 (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 665   = wceq 1290  wcel 1439  wrex 2361  wss 3000  c0 3287  cfv 5028  1oc1o 6188  cdju 6784  inlcinl 6791  inrcinr 6792
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fo 5034  df-fv 5036  df-1st 5925  df-2nd 5926  df-1o 6195  df-dju 6785  df-inl 6793  df-inr 6794
This theorem is referenced by:  exmidfodomrlemr  6889
  Copyright terms: Public domain W3C validator