| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidfodomrlemeldju | GIF version | ||
| Description: Lemma for exmidfodomr 7312. A variant of djur 7171. (Contributed by Jim Kingdon, 2-Jul-2022.) |
| Ref | Expression |
|---|---|
| exmidfodomrlemeldju.a | ⊢ (𝜑 → 𝐴 ⊆ 1o) |
| exmidfodomrlemeldju.el | ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) |
| Ref | Expression |
|---|---|
| exmidfodomrlemeldju | ⊢ (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidfodomrlemeldju.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ⊆ 1o) | |
| 2 | 1 | sselda 3193 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 1o) |
| 3 | el1o 6523 | . . . . . . . . 9 ⊢ (𝑥 ∈ 1o ↔ 𝑥 = ∅) | |
| 4 | 2, 3 | sylib 122 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = ∅) |
| 5 | 4 | fveq2d 5580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (inl‘𝑥) = (inl‘∅)) |
| 6 | 5 | eqeq2d 2217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = (inl‘𝑥) ↔ 𝐵 = (inl‘∅))) |
| 7 | 6 | biimpd 144 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = (inl‘𝑥) → 𝐵 = (inl‘∅))) |
| 8 | 7 | rexlimdva 2623 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥) → 𝐵 = (inl‘∅))) |
| 9 | 8 | imp 124 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥)) → 𝐵 = (inl‘∅)) |
| 10 | 9 | orcd 735 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥)) → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) |
| 11 | simpr 110 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → 𝑥 ∈ 1o) | |
| 12 | 11, 3 | sylib 122 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → 𝑥 = ∅) |
| 13 | 12 | fveq2d 5580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → (inr‘𝑥) = (inr‘∅)) |
| 14 | 13 | eqeq2d 2217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → (𝐵 = (inr‘𝑥) ↔ 𝐵 = (inr‘∅))) |
| 15 | 14 | biimpd 144 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → (𝐵 = (inr‘𝑥) → 𝐵 = (inr‘∅))) |
| 16 | 15 | rexlimdva 2623 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥) → 𝐵 = (inr‘∅))) |
| 17 | 16 | imp 124 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)) → 𝐵 = (inr‘∅)) |
| 18 | 17 | olcd 736 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)) → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) |
| 19 | exmidfodomrlemeldju.el | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) | |
| 20 | djur 7171 | . . 3 ⊢ (𝐵 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥))) | |
| 21 | 19, 20 | sylib 122 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥))) |
| 22 | 10, 18, 21 | mpjaodan 800 | 1 ⊢ (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 ⊆ wss 3166 ∅c0 3460 ‘cfv 5271 1oc1o 6495 ⊔ cdju 7139 inlcinl 7147 inrcinr 7148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-1o 6502 df-dju 7140 df-inl 7149 df-inr 7150 |
| This theorem is referenced by: exmidfodomrlemr 7310 |
| Copyright terms: Public domain | W3C validator |