ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemeldju GIF version

Theorem exmidfodomrlemeldju 7200
Description: Lemma for exmidfodomr 7205. A variant of djur 7070. (Contributed by Jim Kingdon, 2-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemeldju.a (πœ‘ β†’ 𝐴 βŠ† 1o)
exmidfodomrlemeldju.el (πœ‘ β†’ 𝐡 ∈ (𝐴 βŠ” 1o))
Assertion
Ref Expression
exmidfodomrlemeldju (πœ‘ β†’ (𝐡 = (inlβ€˜βˆ…) ∨ 𝐡 = (inrβ€˜βˆ…)))

Proof of Theorem exmidfodomrlemeldju
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemeldju.a . . . . . . . . . 10 (πœ‘ β†’ 𝐴 βŠ† 1o)
21sselda 3157 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ π‘₯ ∈ 1o)
3 el1o 6440 . . . . . . . . 9 (π‘₯ ∈ 1o ↔ π‘₯ = βˆ…)
42, 3sylib 122 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ π‘₯ = βˆ…)
54fveq2d 5521 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (inlβ€˜π‘₯) = (inlβ€˜βˆ…))
65eqeq2d 2189 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (𝐡 = (inlβ€˜π‘₯) ↔ 𝐡 = (inlβ€˜βˆ…)))
76biimpd 144 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (𝐡 = (inlβ€˜π‘₯) β†’ 𝐡 = (inlβ€˜βˆ…)))
87rexlimdva 2594 . . . 4 (πœ‘ β†’ (βˆƒπ‘₯ ∈ 𝐴 𝐡 = (inlβ€˜π‘₯) β†’ 𝐡 = (inlβ€˜βˆ…)))
98imp 124 . . 3 ((πœ‘ ∧ βˆƒπ‘₯ ∈ 𝐴 𝐡 = (inlβ€˜π‘₯)) β†’ 𝐡 = (inlβ€˜βˆ…))
109orcd 733 . 2 ((πœ‘ ∧ βˆƒπ‘₯ ∈ 𝐴 𝐡 = (inlβ€˜π‘₯)) β†’ (𝐡 = (inlβ€˜βˆ…) ∨ 𝐡 = (inrβ€˜βˆ…)))
11 simpr 110 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 1o) β†’ π‘₯ ∈ 1o)
1211, 3sylib 122 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 1o) β†’ π‘₯ = βˆ…)
1312fveq2d 5521 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 1o) β†’ (inrβ€˜π‘₯) = (inrβ€˜βˆ…))
1413eqeq2d 2189 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 1o) β†’ (𝐡 = (inrβ€˜π‘₯) ↔ 𝐡 = (inrβ€˜βˆ…)))
1514biimpd 144 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 1o) β†’ (𝐡 = (inrβ€˜π‘₯) β†’ 𝐡 = (inrβ€˜βˆ…)))
1615rexlimdva 2594 . . . 4 (πœ‘ β†’ (βˆƒπ‘₯ ∈ 1o 𝐡 = (inrβ€˜π‘₯) β†’ 𝐡 = (inrβ€˜βˆ…)))
1716imp 124 . . 3 ((πœ‘ ∧ βˆƒπ‘₯ ∈ 1o 𝐡 = (inrβ€˜π‘₯)) β†’ 𝐡 = (inrβ€˜βˆ…))
1817olcd 734 . 2 ((πœ‘ ∧ βˆƒπ‘₯ ∈ 1o 𝐡 = (inrβ€˜π‘₯)) β†’ (𝐡 = (inlβ€˜βˆ…) ∨ 𝐡 = (inrβ€˜βˆ…)))
19 exmidfodomrlemeldju.el . . 3 (πœ‘ β†’ 𝐡 ∈ (𝐴 βŠ” 1o))
20 djur 7070 . . 3 (𝐡 ∈ (𝐴 βŠ” 1o) ↔ (βˆƒπ‘₯ ∈ 𝐴 𝐡 = (inlβ€˜π‘₯) ∨ βˆƒπ‘₯ ∈ 1o 𝐡 = (inrβ€˜π‘₯)))
2119, 20sylib 122 . 2 (πœ‘ β†’ (βˆƒπ‘₯ ∈ 𝐴 𝐡 = (inlβ€˜π‘₯) ∨ βˆƒπ‘₯ ∈ 1o 𝐡 = (inrβ€˜π‘₯)))
2210, 18, 21mpjaodan 798 1 (πœ‘ β†’ (𝐡 = (inlβ€˜βˆ…) ∨ 𝐡 = (inrβ€˜βˆ…)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∨ wo 708   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456   βŠ† wss 3131  βˆ…c0 3424  β€˜cfv 5218  1oc1o 6412   βŠ” cdju 7038  inlcinl 7046  inrcinr 7047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-dju 7039  df-inl 7048  df-inr 7049
This theorem is referenced by:  exmidfodomrlemr  7203
  Copyright terms: Public domain W3C validator