ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemeldju GIF version

Theorem exmidfodomrlemeldju 7266
Description: Lemma for exmidfodomr 7271. A variant of djur 7135. (Contributed by Jim Kingdon, 2-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemeldju.a (𝜑𝐴 ⊆ 1o)
exmidfodomrlemeldju.el (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
Assertion
Ref Expression
exmidfodomrlemeldju (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))

Proof of Theorem exmidfodomrlemeldju
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemeldju.a . . . . . . . . . 10 (𝜑𝐴 ⊆ 1o)
21sselda 3183 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ 1o)
3 el1o 6495 . . . . . . . . 9 (𝑥 ∈ 1o𝑥 = ∅)
42, 3sylib 122 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 = ∅)
54fveq2d 5562 . . . . . . 7 ((𝜑𝑥𝐴) → (inl‘𝑥) = (inl‘∅))
65eqeq2d 2208 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 = (inl‘𝑥) ↔ 𝐵 = (inl‘∅)))
76biimpd 144 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 = (inl‘𝑥) → 𝐵 = (inl‘∅)))
87rexlimdva 2614 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵 = (inl‘𝑥) → 𝐵 = (inl‘∅)))
98imp 124 . . 3 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = (inl‘𝑥)) → 𝐵 = (inl‘∅))
109orcd 734 . 2 ((𝜑 ∧ ∃𝑥𝐴 𝐵 = (inl‘𝑥)) → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))
11 simpr 110 . . . . . . . . 9 ((𝜑𝑥 ∈ 1o) → 𝑥 ∈ 1o)
1211, 3sylib 122 . . . . . . . 8 ((𝜑𝑥 ∈ 1o) → 𝑥 = ∅)
1312fveq2d 5562 . . . . . . 7 ((𝜑𝑥 ∈ 1o) → (inr‘𝑥) = (inr‘∅))
1413eqeq2d 2208 . . . . . 6 ((𝜑𝑥 ∈ 1o) → (𝐵 = (inr‘𝑥) ↔ 𝐵 = (inr‘∅)))
1514biimpd 144 . . . . 5 ((𝜑𝑥 ∈ 1o) → (𝐵 = (inr‘𝑥) → 𝐵 = (inr‘∅)))
1615rexlimdva 2614 . . . 4 (𝜑 → (∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥) → 𝐵 = (inr‘∅)))
1716imp 124 . . 3 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)) → 𝐵 = (inr‘∅))
1817olcd 735 . 2 ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)) → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))
19 exmidfodomrlemeldju.el . . 3 (𝜑𝐵 ∈ (𝐴 ⊔ 1o))
20 djur 7135 . . 3 (𝐵 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑥𝐴 𝐵 = (inl‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)))
2119, 20sylib 122 . 2 (𝜑 → (∃𝑥𝐴 𝐵 = (inl‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)))
2210, 18, 21mpjaodan 799 1 (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  wrex 2476  wss 3157  c0 3450  cfv 5258  1oc1o 6467  cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  exmidfodomrlemr  7269
  Copyright terms: Public domain W3C validator