| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidfodomrlemeldju | GIF version | ||
| Description: Lemma for exmidfodomr 7283. A variant of djur 7144. (Contributed by Jim Kingdon, 2-Jul-2022.) |
| Ref | Expression |
|---|---|
| exmidfodomrlemeldju.a | ⊢ (𝜑 → 𝐴 ⊆ 1o) |
| exmidfodomrlemeldju.el | ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) |
| Ref | Expression |
|---|---|
| exmidfodomrlemeldju | ⊢ (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidfodomrlemeldju.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ⊆ 1o) | |
| 2 | 1 | sselda 3184 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 1o) |
| 3 | el1o 6504 | . . . . . . . . 9 ⊢ (𝑥 ∈ 1o ↔ 𝑥 = ∅) | |
| 4 | 2, 3 | sylib 122 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = ∅) |
| 5 | 4 | fveq2d 5565 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (inl‘𝑥) = (inl‘∅)) |
| 6 | 5 | eqeq2d 2208 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = (inl‘𝑥) ↔ 𝐵 = (inl‘∅))) |
| 7 | 6 | biimpd 144 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = (inl‘𝑥) → 𝐵 = (inl‘∅))) |
| 8 | 7 | rexlimdva 2614 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥) → 𝐵 = (inl‘∅))) |
| 9 | 8 | imp 124 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥)) → 𝐵 = (inl‘∅)) |
| 10 | 9 | orcd 734 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥)) → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) |
| 11 | simpr 110 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → 𝑥 ∈ 1o) | |
| 12 | 11, 3 | sylib 122 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → 𝑥 = ∅) |
| 13 | 12 | fveq2d 5565 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → (inr‘𝑥) = (inr‘∅)) |
| 14 | 13 | eqeq2d 2208 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → (𝐵 = (inr‘𝑥) ↔ 𝐵 = (inr‘∅))) |
| 15 | 14 | biimpd 144 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) → (𝐵 = (inr‘𝑥) → 𝐵 = (inr‘∅))) |
| 16 | 15 | rexlimdva 2614 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥) → 𝐵 = (inr‘∅))) |
| 17 | 16 | imp 124 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)) → 𝐵 = (inr‘∅)) |
| 18 | 17 | olcd 735 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥)) → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) |
| 19 | exmidfodomrlemeldju.el | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) | |
| 20 | djur 7144 | . . 3 ⊢ (𝐵 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥))) | |
| 21 | 19, 20 | sylib 122 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 = (inl‘𝑥) ∨ ∃𝑥 ∈ 1o 𝐵 = (inr‘𝑥))) |
| 22 | 10, 18, 21 | mpjaodan 799 | 1 ⊢ (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ⊆ wss 3157 ∅c0 3451 ‘cfv 5259 1oc1o 6476 ⊔ cdju 7112 inlcinl 7120 inrcinr 7121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-1o 6483 df-dju 7113 df-inl 7122 df-inr 7123 |
| This theorem is referenced by: exmidfodomrlemr 7281 |
| Copyright terms: Public domain | W3C validator |