Step | Hyp | Ref
| Expression |
1 | | exmidfodomrlemeldju.a |
. . . . . . . . . 10
β’ (π β π΄ β 1o) |
2 | 1 | sselda 3157 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΄) β π₯ β 1o) |
3 | | el1o 6440 |
. . . . . . . . 9
β’ (π₯ β 1o β
π₯ =
β
) |
4 | 2, 3 | sylib 122 |
. . . . . . . 8
β’ ((π β§ π₯ β π΄) β π₯ = β
) |
5 | 4 | fveq2d 5521 |
. . . . . . 7
β’ ((π β§ π₯ β π΄) β (inlβπ₯) = (inlββ
)) |
6 | 5 | eqeq2d 2189 |
. . . . . 6
β’ ((π β§ π₯ β π΄) β (π΅ = (inlβπ₯) β π΅ = (inlββ
))) |
7 | 6 | biimpd 144 |
. . . . 5
β’ ((π β§ π₯ β π΄) β (π΅ = (inlβπ₯) β π΅ = (inlββ
))) |
8 | 7 | rexlimdva 2594 |
. . . 4
β’ (π β (βπ₯ β π΄ π΅ = (inlβπ₯) β π΅ = (inlββ
))) |
9 | 8 | imp 124 |
. . 3
β’ ((π β§ βπ₯ β π΄ π΅ = (inlβπ₯)) β π΅ = (inlββ
)) |
10 | 9 | orcd 733 |
. 2
β’ ((π β§ βπ₯ β π΄ π΅ = (inlβπ₯)) β (π΅ = (inlββ
) β¨ π΅ =
(inrββ
))) |
11 | | simpr 110 |
. . . . . . . . 9
β’ ((π β§ π₯ β 1o) β π₯ β
1o) |
12 | 11, 3 | sylib 122 |
. . . . . . . 8
β’ ((π β§ π₯ β 1o) β π₯ = β
) |
13 | 12 | fveq2d 5521 |
. . . . . . 7
β’ ((π β§ π₯ β 1o) β
(inrβπ₯) =
(inrββ
)) |
14 | 13 | eqeq2d 2189 |
. . . . . 6
β’ ((π β§ π₯ β 1o) β (π΅ = (inrβπ₯) β π΅ = (inrββ
))) |
15 | 14 | biimpd 144 |
. . . . 5
β’ ((π β§ π₯ β 1o) β (π΅ = (inrβπ₯) β π΅ = (inrββ
))) |
16 | 15 | rexlimdva 2594 |
. . . 4
β’ (π β (βπ₯ β 1o π΅ = (inrβπ₯) β π΅ = (inrββ
))) |
17 | 16 | imp 124 |
. . 3
β’ ((π β§ βπ₯ β 1o π΅ = (inrβπ₯)) β π΅ = (inrββ
)) |
18 | 17 | olcd 734 |
. 2
β’ ((π β§ βπ₯ β 1o π΅ = (inrβπ₯)) β (π΅ = (inlββ
) β¨ π΅ =
(inrββ
))) |
19 | | exmidfodomrlemeldju.el |
. . 3
β’ (π β π΅ β (π΄ β 1o)) |
20 | | djur 7070 |
. . 3
β’ (π΅ β (π΄ β 1o) β
(βπ₯ β π΄ π΅ = (inlβπ₯) β¨ βπ₯ β 1o π΅ = (inrβπ₯))) |
21 | 19, 20 | sylib 122 |
. 2
β’ (π β (βπ₯ β π΄ π΅ = (inlβπ₯) β¨ βπ₯ β 1o π΅ = (inrβπ₯))) |
22 | 10, 18, 21 | mpjaodan 798 |
1
β’ (π β (π΅ = (inlββ
) β¨ π΅ =
(inrββ
))) |