ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0e GIF version

Theorem map0e 6573
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0e (𝐴𝑉 → (𝐴𝑚 ∅) = 1o)

Proof of Theorem map0e
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 4050 . . . 4 ∅ ∈ V
2 elmapg 6548 . . . 4 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓:∅⟶𝐴))
31, 2mpan2 421 . . 3 (𝐴𝑉 → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓:∅⟶𝐴))
4 f0bi 5310 . . . 4 (𝑓:∅⟶𝐴𝑓 = ∅)
5 el1o 6327 . . . 4 (𝑓 ∈ 1o𝑓 = ∅)
64, 5bitr4i 186 . . 3 (𝑓:∅⟶𝐴𝑓 ∈ 1o)
73, 6syl6bb 195 . 2 (𝐴𝑉 → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓 ∈ 1o))
87eqrdv 2135 1 (𝐴𝑉 → (𝐴𝑚 ∅) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wcel 1480  Vcvv 2681  c0 3358  wf 5114  (class class class)co 5767  1oc1o 6299  𝑚 cmap 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1o 6306  df-map 6537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator