Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > map0e | GIF version |
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
map0e | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . . 4 ⊢ ∅ ∈ V | |
2 | elmapg 6627 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) | |
3 | 1, 2 | mpan2 422 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) |
4 | f0bi 5380 | . . . 4 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 = ∅) | |
5 | el1o 6405 | . . . 4 ⊢ (𝑓 ∈ 1o ↔ 𝑓 = ∅) | |
6 | 4, 5 | bitr4i 186 | . . 3 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 ∈ 1o) |
7 | 3, 6 | bitrdi 195 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓 ∈ 1o)) |
8 | 7 | eqrdv 2163 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 ⟶wf 5184 (class class class)co 5842 1oc1o 6377 ↑𝑚 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-map 6616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |