| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > map0e | GIF version | ||
| Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| map0e | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4211 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | elmapg 6816 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) |
| 4 | f0bi 5520 | . . . 4 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 = ∅) | |
| 5 | el1o 6591 | . . . 4 ⊢ (𝑓 ∈ 1o ↔ 𝑓 = ∅) | |
| 6 | 4, 5 | bitr4i 187 | . . 3 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 ∈ 1o) |
| 7 | 3, 6 | bitrdi 196 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓 ∈ 1o)) |
| 8 | 7 | eqrdv 2227 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 ⟶wf 5314 (class class class)co 6007 1oc1o 6561 ↑𝑚 cmap 6803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1o 6568 df-map 6805 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |