ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0e GIF version

Theorem map0e 6534
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0e (𝐴𝑉 → (𝐴𝑚 ∅) = 1o)

Proof of Theorem map0e
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 4015 . . . 4 ∅ ∈ V
2 elmapg 6509 . . . 4 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓:∅⟶𝐴))
31, 2mpan2 419 . . 3 (𝐴𝑉 → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓:∅⟶𝐴))
4 f0bi 5273 . . . 4 (𝑓:∅⟶𝐴𝑓 = ∅)
5 el1o 6288 . . . 4 (𝑓 ∈ 1o𝑓 = ∅)
64, 5bitr4i 186 . . 3 (𝑓:∅⟶𝐴𝑓 ∈ 1o)
73, 6syl6bb 195 . 2 (𝐴𝑉 → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓 ∈ 1o))
87eqrdv 2113 1 (𝐴𝑉 → (𝐴𝑚 ∅) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1314  wcel 1463  Vcvv 2657  c0 3329  wf 5077  (class class class)co 5728  1oc1o 6260  𝑚 cmap 6496
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-suc 4253  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1o 6267  df-map 6498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator