Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > map0e | GIF version |
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
map0e | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4125 | . . . 4 ⊢ ∅ ∈ V | |
2 | elmapg 6651 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) | |
3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) |
4 | f0bi 5400 | . . . 4 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 = ∅) | |
5 | el1o 6428 | . . . 4 ⊢ (𝑓 ∈ 1o ↔ 𝑓 = ∅) | |
6 | 4, 5 | bitr4i 187 | . . 3 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 ∈ 1o) |
7 | 3, 6 | bitrdi 196 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓 ∈ 1o)) |
8 | 7 | eqrdv 2173 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 Vcvv 2735 ∅c0 3420 ⟶wf 5204 (class class class)co 5865 1oc1o 6400 ↑𝑚 cmap 6638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-suc 4365 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1o 6407 df-map 6640 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |