ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0e GIF version

Theorem map0e 6740
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0e (𝐴𝑉 → (𝐴𝑚 ∅) = 1o)

Proof of Theorem map0e
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 4156 . . . 4 ∅ ∈ V
2 elmapg 6715 . . . 4 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓:∅⟶𝐴))
31, 2mpan2 425 . . 3 (𝐴𝑉 → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓:∅⟶𝐴))
4 f0bi 5446 . . . 4 (𝑓:∅⟶𝐴𝑓 = ∅)
5 el1o 6490 . . . 4 (𝑓 ∈ 1o𝑓 = ∅)
64, 5bitr4i 187 . . 3 (𝑓:∅⟶𝐴𝑓 ∈ 1o)
73, 6bitrdi 196 . 2 (𝐴𝑉 → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓 ∈ 1o))
87eqrdv 2191 1 (𝐴𝑉 → (𝐴𝑚 ∅) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  c0 3446  wf 5250  (class class class)co 5918  1oc1o 6462  𝑚 cmap 6702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-map 6704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator