Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > map0e | GIF version |
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
map0e | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . . 4 ⊢ ∅ ∈ V | |
2 | elmapg 6639 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) | |
3 | 1, 2 | mpan2 423 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) |
4 | f0bi 5390 | . . . 4 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 = ∅) | |
5 | el1o 6416 | . . . 4 ⊢ (𝑓 ∈ 1o ↔ 𝑓 = ∅) | |
6 | 4, 5 | bitr4i 186 | . . 3 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 ∈ 1o) |
7 | 3, 6 | bitrdi 195 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓 ∈ 1o)) |
8 | 7 | eqrdv 2168 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∅c0 3414 ⟶wf 5194 (class class class)co 5853 1oc1o 6388 ↑𝑚 cmap 6626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1o 6395 df-map 6628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |