| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elec | GIF version | ||
| Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| elec.1 | ⊢ 𝐴 ∈ V |
| elec.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elec | ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elec.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elec.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | elecg 6690 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2180 Vcvv 2779 class class class wbr 4062 [cec 6648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-cnv 4704 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-ec 6652 |
| This theorem is referenced by: ecid 6715 |
| Copyright terms: Public domain | W3C validator |