ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elec GIF version

Theorem elec 6668
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
elec.1 𝐴 ∈ V
elec.2 𝐵 ∈ V
Assertion
Ref Expression
elec (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)

Proof of Theorem elec
StepHypRef Expression
1 elec.1 . 2 𝐴 ∈ V
2 elec.2 . 2 𝐵 ∈ V
3 elecg 6667 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
41, 2, 3mp2an 426 1 (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2177  Vcvv 2773   class class class wbr 4047  [cec 6625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-xp 4685  df-cnv 4687  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-ec 6629
This theorem is referenced by:  ecid  6692
  Copyright terms: Public domain W3C validator