![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano1nnnn | GIF version |
Description: One is an element of ℕ. This is a counterpart to 1nn 8943 designed for real number axioms which involve natural numbers (notably, axcaucvg 7912). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
peano1nnnn.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Ref | Expression |
---|---|
peano1nnnn | ⊢ 1 ∈ 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1nnnn.n | . . . 4 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | eleq2i 2254 | . . 3 ⊢ (1 ∈ 𝑁 ↔ 1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
3 | df-1 7832 | . . . . 5 ⊢ 1 = ⟨1R, 0R⟩ | |
4 | 1sr 7763 | . . . . . 6 ⊢ 1R ∈ R | |
5 | opelreal 7839 | . . . . . 6 ⊢ (⟨1R, 0R⟩ ∈ ℝ ↔ 1R ∈ R) | |
6 | 4, 5 | mpbir 146 | . . . . 5 ⊢ ⟨1R, 0R⟩ ∈ ℝ |
7 | 3, 6 | eqeltri 2260 | . . . 4 ⊢ 1 ∈ ℝ |
8 | elintg 3864 | . . . 4 ⊢ (1 ∈ ℝ → (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
10 | 2, 9 | bitri 184 | . 2 ⊢ (1 ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
11 | vex 2752 | . . . 4 ⊢ 𝑧 ∈ V | |
12 | eleq2 2251 | . . . . 5 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
13 | eleq2 2251 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
14 | 13 | raleqbi1dv 2691 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
15 | 12, 14 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
16 | 11, 15 | elab 2893 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
17 | 16 | simplbi 274 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 1 ∈ 𝑧) |
18 | 10, 17 | mprgbir 2545 | 1 ⊢ 1 ∈ 𝑁 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 {cab 2173 ∀wral 2465 ⟨cop 3607 ∩ cint 3856 (class class class)co 5888 Rcnr 7309 0Rc0r 7310 1Rc1r 7311 ℝcr 7823 1c1 7825 + caddc 7827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-eprel 4301 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-irdg 6384 df-1o 6430 df-2o 6431 df-oadd 6434 df-omul 6435 df-er 6548 df-ec 6550 df-qs 6554 df-ni 7316 df-pli 7317 df-mi 7318 df-lti 7319 df-plpq 7356 df-mpq 7357 df-enq 7359 df-nqqs 7360 df-plqqs 7361 df-mqqs 7362 df-1nqqs 7363 df-rq 7364 df-ltnqqs 7365 df-enq0 7436 df-nq0 7437 df-0nq0 7438 df-plq0 7439 df-mq0 7440 df-inp 7478 df-i1p 7479 df-iplp 7480 df-enr 7738 df-nr 7739 df-0r 7743 df-1r 7744 df-1 7832 df-r 7834 |
This theorem is referenced by: nnindnn 7905 |
Copyright terms: Public domain | W3C validator |