ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano1nnnn GIF version

Theorem peano1nnnn 7674
Description: One is an element of . This is a counterpart to 1nn 8745 designed for real number axioms which involve natural numbers (notably, axcaucvg 7722). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
peano1nnnn.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Assertion
Ref Expression
peano1nnnn 1 ∈ 𝑁
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem peano1nnnn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 peano1nnnn.n . . . 4 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21eleq2i 2206 . . 3 (1 ∈ 𝑁 ↔ 1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
3 df-1 7642 . . . . 5 1 = ⟨1R, 0R
4 1sr 7573 . . . . . 6 1RR
5 opelreal 7649 . . . . . 6 (⟨1R, 0R⟩ ∈ ℝ ↔ 1RR)
64, 5mpbir 145 . . . . 5 ⟨1R, 0R⟩ ∈ ℝ
73, 6eqeltri 2212 . . . 4 1 ∈ ℝ
8 elintg 3779 . . . 4 (1 ∈ ℝ → (1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧))
97, 8ax-mp 5 . . 3 (1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)
102, 9bitri 183 . 2 (1 ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)
11 vex 2689 . . . 4 𝑧 ∈ V
12 eleq2 2203 . . . . 5 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
13 eleq2 2203 . . . . . 6 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
1413raleqbi1dv 2634 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
1512, 14anbi12d 464 . . . 4 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
1611, 15elab 2828 . . 3 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
1716simplbi 272 . 2 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → 1 ∈ 𝑧)
1810, 17mprgbir 2490 1 1 ∈ 𝑁
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1331  wcel 1480  {cab 2125  wral 2416  cop 3530   cint 3771  (class class class)co 5774  Rcnr 7119  0Rc0r 7120  1Rc1r 7121  cr 7633  1c1 7635   + caddc 7637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7126  df-pli 7127  df-mi 7128  df-lti 7129  df-plpq 7166  df-mpq 7167  df-enq 7169  df-nqqs 7170  df-plqqs 7171  df-mqqs 7172  df-1nqqs 7173  df-rq 7174  df-ltnqqs 7175  df-enq0 7246  df-nq0 7247  df-0nq0 7248  df-plq0 7249  df-mq0 7250  df-inp 7288  df-i1p 7289  df-iplp 7290  df-enr 7548  df-nr 7549  df-0r 7553  df-1r 7554  df-1 7642  df-r 7644
This theorem is referenced by:  nnindnn  7715
  Copyright terms: Public domain W3C validator