| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucr | GIF version | ||
| Description: Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4577. However, the converse does hold where 𝐵 is a natural number, as seen at nnsucelsuc 6576. (Contributed by Jim Kingdon, 17-Jul-2019.) |
| Ref | Expression |
|---|---|
| onsucelsucr | ⊢ (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 | . . . 4 ⊢ (suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V) | |
| 2 | sucexb 4544 | . . . 4 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 3 | 1, 2 | sylibr 134 | . . 3 ⊢ (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ V) |
| 4 | onelss 4433 | . . . . . . 7 ⊢ (𝐵 ∈ On → (suc 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
| 5 | eqimss 3246 | . . . . . . . 8 ⊢ (suc 𝐴 = 𝐵 → suc 𝐴 ⊆ 𝐵) | |
| 6 | 5 | a1i 9 | . . . . . . 7 ⊢ (𝐵 ∈ On → (suc 𝐴 = 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 7 | 4, 6 | jaod 718 | . . . . . 6 ⊢ (𝐵 ∈ On → ((suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵) → suc 𝐴 ⊆ 𝐵)) |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ On) → ((suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵) → suc 𝐴 ⊆ 𝐵)) |
| 9 | elsucg 4450 | . . . . . . 7 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) | |
| 10 | 2, 9 | sylbi 121 | . . . . . 6 ⊢ (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
| 11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ On) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
| 12 | eloni 4421 | . . . . . 6 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 13 | ordelsuc 4552 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | |
| 14 | 12, 13 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
| 15 | 8, 11, 14 | 3imtr4d 203 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ On) → (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
| 16 | 15 | impancom 260 | . . 3 ⊢ ((𝐴 ∈ V ∧ suc 𝐴 ∈ suc 𝐵) → (𝐵 ∈ On → 𝐴 ∈ 𝐵)) |
| 17 | 3, 16 | mpancom 422 | . 2 ⊢ (suc 𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴 ∈ 𝐵)) |
| 18 | 17 | com12 30 | 1 ⊢ (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ⊆ wss 3165 Ord word 4408 Oncon0 4409 suc csuc 4411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4412 df-on 4414 df-suc 4417 |
| This theorem is referenced by: nnsucelsuc 6576 |
| Copyright terms: Public domain | W3C validator |