ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucr GIF version

Theorem onsucelsucr 4540
Description: Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4562. However, the converse does hold where 𝐵 is a natural number, as seen at nnsucelsuc 6544. (Contributed by Jim Kingdon, 17-Jul-2019.)
Assertion
Ref Expression
onsucelsucr (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵𝐴𝐵))

Proof of Theorem onsucelsucr
StepHypRef Expression
1 elex 2771 . . . 4 (suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V)
2 sucexb 4529 . . . 4 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylibr 134 . . 3 (suc 𝐴 ∈ suc 𝐵𝐴 ∈ V)
4 onelss 4418 . . . . . . 7 (𝐵 ∈ On → (suc 𝐴𝐵 → suc 𝐴𝐵))
5 eqimss 3233 . . . . . . . 8 (suc 𝐴 = 𝐵 → suc 𝐴𝐵)
65a1i 9 . . . . . . 7 (𝐵 ∈ On → (suc 𝐴 = 𝐵 → suc 𝐴𝐵))
74, 6jaod 718 . . . . . 6 (𝐵 ∈ On → ((suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵) → suc 𝐴𝐵))
87adantl 277 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ On) → ((suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵) → suc 𝐴𝐵))
9 elsucg 4435 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
102, 9sylbi 121 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1110adantr 276 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ On) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
12 eloni 4406 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
13 ordelsuc 4537 . . . . . 6 ((𝐴 ∈ V ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))
1412, 13sylan2 286 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ suc 𝐴𝐵))
158, 11, 143imtr4d 203 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ On) → (suc 𝐴 ∈ suc 𝐵𝐴𝐵))
1615impancom 260 . . 3 ((𝐴 ∈ V ∧ suc 𝐴 ∈ suc 𝐵) → (𝐵 ∈ On → 𝐴𝐵))
173, 16mpancom 422 . 2 (suc 𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴𝐵))
1817com12 30 1 (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153  Ord word 4393  Oncon0 4394  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402
This theorem is referenced by:  nnsucelsuc  6544
  Copyright terms: Public domain W3C validator