Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucr | GIF version |
Description: Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4507. However, the converse does hold where 𝐵 is a natural number, as seen at nnsucelsuc 6459. (Contributed by Jim Kingdon, 17-Jul-2019.) |
Ref | Expression |
---|---|
onsucelsucr | ⊢ (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . . 4 ⊢ (suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V) | |
2 | sucexb 4474 | . . . 4 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | sylibr 133 | . . 3 ⊢ (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ V) |
4 | onelss 4365 | . . . . . . 7 ⊢ (𝐵 ∈ On → (suc 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
5 | eqimss 3196 | . . . . . . . 8 ⊢ (suc 𝐴 = 𝐵 → suc 𝐴 ⊆ 𝐵) | |
6 | 5 | a1i 9 | . . . . . . 7 ⊢ (𝐵 ∈ On → (suc 𝐴 = 𝐵 → suc 𝐴 ⊆ 𝐵)) |
7 | 4, 6 | jaod 707 | . . . . . 6 ⊢ (𝐵 ∈ On → ((suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵) → suc 𝐴 ⊆ 𝐵)) |
8 | 7 | adantl 275 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ On) → ((suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵) → suc 𝐴 ⊆ 𝐵)) |
9 | elsucg 4382 | . . . . . . 7 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) | |
10 | 2, 9 | sylbi 120 | . . . . . 6 ⊢ (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
11 | 10 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ On) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
12 | eloni 4353 | . . . . . 6 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
13 | ordelsuc 4482 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | |
14 | 12, 13 | sylan2 284 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
15 | 8, 11, 14 | 3imtr4d 202 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ On) → (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
16 | 15 | impancom 258 | . . 3 ⊢ ((𝐴 ∈ V ∧ suc 𝐴 ∈ suc 𝐵) → (𝐵 ∈ On → 𝐴 ∈ 𝐵)) |
17 | 3, 16 | mpancom 419 | . 2 ⊢ (suc 𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴 ∈ 𝐵)) |
18 | 17 | com12 30 | 1 ⊢ (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 Ord word 4340 Oncon0 4341 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: nnsucelsuc 6459 |
Copyright terms: Public domain | W3C validator |