ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1oleme GIF version

Theorem reeff1oleme 13487
Description: Lemma for reeff1o 13488. (Contributed by Jim Kingdon, 15-May-2024.)
Assertion
Ref Expression
reeff1oleme (𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Distinct variable group:   𝑥,𝑈

Proof of Theorem reeff1oleme
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ere 11633 . . . . 5 e ∈ ℝ
21a1i 9 . . . 4 (𝑈 ∈ (0(,)e) → e ∈ ℝ)
3 elioore 9869 . . . 4 (𝑈 ∈ (0(,)e) → 𝑈 ∈ ℝ)
4 0xr 7966 . . . . . . 7 0 ∈ ℝ*
51rexri 7977 . . . . . . 7 e ∈ ℝ*
6 elioo2 9878 . . . . . . 7 ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑈 ∈ (0(,)e) ↔ (𝑈 ∈ ℝ ∧ 0 < 𝑈𝑈 < e)))
74, 5, 6mp2an 424 . . . . . 6 (𝑈 ∈ (0(,)e) ↔ (𝑈 ∈ ℝ ∧ 0 < 𝑈𝑈 < e))
87simp2bi 1008 . . . . 5 (𝑈 ∈ (0(,)e) → 0 < 𝑈)
93, 8gt0ap0d 8548 . . . 4 (𝑈 ∈ (0(,)e) → 𝑈 # 0)
102, 3, 9redivclapd 8752 . . 3 (𝑈 ∈ (0(,)e) → (e / 𝑈) ∈ ℝ)
113recnd 7948 . . . . . 6 (𝑈 ∈ (0(,)e) → 𝑈 ∈ ℂ)
1211mulid2d 7938 . . . . 5 (𝑈 ∈ (0(,)e) → (1 · 𝑈) = 𝑈)
137simp3bi 1009 . . . . 5 (𝑈 ∈ (0(,)e) → 𝑈 < e)
1412, 13eqbrtrd 4011 . . . 4 (𝑈 ∈ (0(,)e) → (1 · 𝑈) < e)
15 1red 7935 . . . . 5 (𝑈 ∈ (0(,)e) → 1 ∈ ℝ)
16 ltmuldiv 8790 . . . . 5 ((1 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑈 ∈ ℝ ∧ 0 < 𝑈)) → ((1 · 𝑈) < e ↔ 1 < (e / 𝑈)))
1715, 2, 3, 8, 16syl112anc 1237 . . . 4 (𝑈 ∈ (0(,)e) → ((1 · 𝑈) < e ↔ 1 < (e / 𝑈)))
1814, 17mpbid 146 . . 3 (𝑈 ∈ (0(,)e) → 1 < (e / 𝑈))
19 reeff1olem 13486 . . 3 (((e / 𝑈) ∈ ℝ ∧ 1 < (e / 𝑈)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (e / 𝑈))
2010, 18, 19syl2anc 409 . 2 (𝑈 ∈ (0(,)e) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (e / 𝑈))
21 1red 7935 . . . 4 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 1 ∈ ℝ)
22 simprl 526 . . . 4 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 𝑦 ∈ ℝ)
2321, 22resubcld 8300 . . 3 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (1 − 𝑦) ∈ ℝ)
24 1cnd 7936 . . . . 5 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 1 ∈ ℂ)
2522recnd 7948 . . . . 5 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 𝑦 ∈ ℂ)
26 efsub 11644 . . . . 5 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(1 − 𝑦)) = ((exp‘1) / (exp‘𝑦)))
2724, 25, 26syl2anc 409 . . . 4 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘(1 − 𝑦)) = ((exp‘1) / (exp‘𝑦)))
28 simprr 527 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘𝑦) = (e / 𝑈))
29 df-e 11612 . . . . . . . 8 e = (exp‘1)
3029oveq1i 5863 . . . . . . 7 (e / 𝑈) = ((exp‘1) / 𝑈)
3128, 30eqtr2di 2220 . . . . . 6 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → ((exp‘1) / 𝑈) = (exp‘𝑦))
32 efcl 11627 . . . . . . . 8 (1 ∈ ℂ → (exp‘1) ∈ ℂ)
3324, 32syl 14 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘1) ∈ ℂ)
34 efcl 11627 . . . . . . . 8 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
3525, 34syl 14 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘𝑦) ∈ ℂ)
3611adantr 274 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 𝑈 ∈ ℂ)
379adantr 274 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 𝑈 # 0)
3833, 35, 36, 37divmulap2d 8741 . . . . . 6 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (((exp‘1) / 𝑈) = (exp‘𝑦) ↔ (exp‘1) = (𝑈 · (exp‘𝑦))))
3931, 38mpbid 146 . . . . 5 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘1) = (𝑈 · (exp‘𝑦)))
4022rpefcld 11649 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘𝑦) ∈ ℝ+)
4140rpap0d 9659 . . . . . 6 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘𝑦) # 0)
4233, 36, 35, 41divmulap3d 8742 . . . . 5 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (((exp‘1) / (exp‘𝑦)) = 𝑈 ↔ (exp‘1) = (𝑈 · (exp‘𝑦))))
4339, 42mpbird 166 . . . 4 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → ((exp‘1) / (exp‘𝑦)) = 𝑈)
4427, 43eqtrd 2203 . . 3 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘(1 − 𝑦)) = 𝑈)
45 fveqeq2 5505 . . . 4 (𝑥 = (1 − 𝑦) → ((exp‘𝑥) = 𝑈 ↔ (exp‘(1 − 𝑦)) = 𝑈))
4645rspcev 2834 . . 3 (((1 − 𝑦) ∈ ℝ ∧ (exp‘(1 − 𝑦)) = 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
4723, 44, 46syl2anc 409 . 2 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
4820, 47rexlimddv 2592 1 (𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wrex 2449   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   · cmul 7779  *cxr 7953   < clt 7954  cmin 8090   # cap 8500   / cdiv 8589  (,)cioo 9845  expce 11605  eceu 11606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895  ax-addf 7896  ax-mulf 7897
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-map 6628  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-ioo 9849  df-ico 9851  df-icc 9852  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-e 11612  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-cncf 13352  df-limced 13419  df-dvap 13420
This theorem is referenced by:  reeff1o  13488
  Copyright terms: Public domain W3C validator