ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1oleme GIF version

Theorem reeff1oleme 15454
Description: Lemma for reeff1o 15455. (Contributed by Jim Kingdon, 15-May-2024.)
Assertion
Ref Expression
reeff1oleme (𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Distinct variable group:   𝑥,𝑈

Proof of Theorem reeff1oleme
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ere 12189 . . . . 5 e ∈ ℝ
21a1i 9 . . . 4 (𝑈 ∈ (0(,)e) → e ∈ ℝ)
3 elioore 10116 . . . 4 (𝑈 ∈ (0(,)e) → 𝑈 ∈ ℝ)
4 0xr 8201 . . . . . . 7 0 ∈ ℝ*
51rexri 8212 . . . . . . 7 e ∈ ℝ*
6 elioo2 10125 . . . . . . 7 ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑈 ∈ (0(,)e) ↔ (𝑈 ∈ ℝ ∧ 0 < 𝑈𝑈 < e)))
74, 5, 6mp2an 426 . . . . . 6 (𝑈 ∈ (0(,)e) ↔ (𝑈 ∈ ℝ ∧ 0 < 𝑈𝑈 < e))
87simp2bi 1037 . . . . 5 (𝑈 ∈ (0(,)e) → 0 < 𝑈)
93, 8gt0ap0d 8784 . . . 4 (𝑈 ∈ (0(,)e) → 𝑈 # 0)
102, 3, 9redivclapd 8990 . . 3 (𝑈 ∈ (0(,)e) → (e / 𝑈) ∈ ℝ)
113recnd 8183 . . . . . 6 (𝑈 ∈ (0(,)e) → 𝑈 ∈ ℂ)
1211mulid2d 8173 . . . . 5 (𝑈 ∈ (0(,)e) → (1 · 𝑈) = 𝑈)
137simp3bi 1038 . . . . 5 (𝑈 ∈ (0(,)e) → 𝑈 < e)
1412, 13eqbrtrd 4105 . . . 4 (𝑈 ∈ (0(,)e) → (1 · 𝑈) < e)
15 1red 8169 . . . . 5 (𝑈 ∈ (0(,)e) → 1 ∈ ℝ)
16 ltmuldiv 9029 . . . . 5 ((1 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑈 ∈ ℝ ∧ 0 < 𝑈)) → ((1 · 𝑈) < e ↔ 1 < (e / 𝑈)))
1715, 2, 3, 8, 16syl112anc 1275 . . . 4 (𝑈 ∈ (0(,)e) → ((1 · 𝑈) < e ↔ 1 < (e / 𝑈)))
1814, 17mpbid 147 . . 3 (𝑈 ∈ (0(,)e) → 1 < (e / 𝑈))
19 reeff1olem 15453 . . 3 (((e / 𝑈) ∈ ℝ ∧ 1 < (e / 𝑈)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (e / 𝑈))
2010, 18, 19syl2anc 411 . 2 (𝑈 ∈ (0(,)e) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (e / 𝑈))
21 1red 8169 . . . 4 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 1 ∈ ℝ)
22 simprl 529 . . . 4 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 𝑦 ∈ ℝ)
2321, 22resubcld 8535 . . 3 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (1 − 𝑦) ∈ ℝ)
24 1cnd 8170 . . . . 5 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 1 ∈ ℂ)
2522recnd 8183 . . . . 5 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 𝑦 ∈ ℂ)
26 efsub 12200 . . . . 5 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(1 − 𝑦)) = ((exp‘1) / (exp‘𝑦)))
2724, 25, 26syl2anc 411 . . . 4 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘(1 − 𝑦)) = ((exp‘1) / (exp‘𝑦)))
28 simprr 531 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘𝑦) = (e / 𝑈))
29 df-e 12168 . . . . . . . 8 e = (exp‘1)
3029oveq1i 6017 . . . . . . 7 (e / 𝑈) = ((exp‘1) / 𝑈)
3128, 30eqtr2di 2279 . . . . . 6 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → ((exp‘1) / 𝑈) = (exp‘𝑦))
32 efcl 12183 . . . . . . . 8 (1 ∈ ℂ → (exp‘1) ∈ ℂ)
3324, 32syl 14 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘1) ∈ ℂ)
34 efcl 12183 . . . . . . . 8 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
3525, 34syl 14 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘𝑦) ∈ ℂ)
3611adantr 276 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 𝑈 ∈ ℂ)
379adantr 276 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → 𝑈 # 0)
3833, 35, 36, 37divmulap2d 8979 . . . . . 6 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (((exp‘1) / 𝑈) = (exp‘𝑦) ↔ (exp‘1) = (𝑈 · (exp‘𝑦))))
3931, 38mpbid 147 . . . . 5 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘1) = (𝑈 · (exp‘𝑦)))
4022rpefcld 12205 . . . . . . 7 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘𝑦) ∈ ℝ+)
4140rpap0d 9906 . . . . . 6 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘𝑦) # 0)
4233, 36, 35, 41divmulap3d 8980 . . . . 5 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (((exp‘1) / (exp‘𝑦)) = 𝑈 ↔ (exp‘1) = (𝑈 · (exp‘𝑦))))
4339, 42mpbird 167 . . . 4 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → ((exp‘1) / (exp‘𝑦)) = 𝑈)
4427, 43eqtrd 2262 . . 3 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → (exp‘(1 − 𝑦)) = 𝑈)
45 fveqeq2 5638 . . . 4 (𝑥 = (1 − 𝑦) → ((exp‘𝑥) = 𝑈 ↔ (exp‘(1 − 𝑦)) = 𝑈))
4645rspcev 2907 . . 3 (((1 − 𝑦) ∈ ℝ ∧ (exp‘(1 − 𝑦)) = 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
4723, 44, 46syl2anc 411 . 2 ((𝑈 ∈ (0(,)e) ∧ (𝑦 ∈ ℝ ∧ (exp‘𝑦) = (e / 𝑈))) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
4820, 47rexlimddv 2653 1 (𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007  1c1 8008   · cmul 8012  *cxr 8188   < clt 8189  cmin 8325   # cap 8736   / cdiv 8827  (,)cioo 10092  expce 12161  eceu 12162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-pre-suploc 8128  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-map 6805  df-pm 6806  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-ioo 10096  df-ico 10098  df-icc 10099  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-bc 10978  df-ihash 11006  df-shft 11334  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ef 12167  df-e 12168  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-tx 14935  df-cncf 15253  df-limced 15338  df-dvap 15339
This theorem is referenced by:  reeff1o  15455
  Copyright terms: Public domain W3C validator