ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01bnd GIF version

Theorem sin01bnd 11749
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))

Proof of Theorem sin01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7994 . . . . . . . . 9 0 ∈ ℝ*
2 1re 7947 . . . . . . . . 9 1 ∈ ℝ
3 elioc2 9923 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 426 . . . . . . . 8 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1012 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 eqid 2177 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
76resin4p 11710 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
85, 7syl 14 . . . . . 6 (𝐴 ∈ (0(,]1) → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
98eqcomd 2183 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (sin‘𝐴))
105resincld 11715 . . . . . . 7 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℝ)
1110recnd 7976 . . . . . 6 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℂ)
12 3nn0 9183 . . . . . . . . . 10 3 ∈ ℕ0
13 reexpcl 10523 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
145, 12, 13sylancl 413 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℝ)
15 6nn 9073 . . . . . . . . 9 6 ∈ ℕ
16 nndivre 8944 . . . . . . . . 9 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑3) / 6) ∈ ℝ)
1714, 15, 16sylancl 413 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℝ)
185, 17resubcld 8328 . . . . . . 7 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
1918recnd 7976 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
20 ax-icn 7897 . . . . . . . . . 10 i ∈ ℂ
215recnd 7976 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
22 mulcl 7929 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
2320, 21, 22sylancr 414 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
24 4nn0 9184 . . . . . . . . 9 4 ∈ ℕ0
256eftlcl 11680 . . . . . . . . 9 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2623, 24, 25sylancl 413 . . . . . . . 8 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2726imcld 10932 . . . . . . 7 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2827recnd 7976 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2911, 19, 28subaddd 8276 . . . . 5 (𝐴 ∈ (0(,]1) → (((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6))) = (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ↔ ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (sin‘𝐴)))
309, 29mpbird 167 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6))) = (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3130fveq2d 5515 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) = (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
3228abscld 11174 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
3326abscld 11174 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
34 absimle 11077 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3526, 34syl 14 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
36 reexpcl 10523 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
375, 24, 36sylancl 413 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
38 nndivre 8944 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3937, 15, 38sylancl 413 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
406ef01bndlem 11748 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
4112a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 3 ∈ ℕ0)
42 4z 9272 . . . . . . . . 9 4 ∈ ℤ
43 3re 8982 . . . . . . . . . 10 3 ∈ ℝ
44 4re 8985 . . . . . . . . . 10 4 ∈ ℝ
45 3lt4 9080 . . . . . . . . . 10 3 < 4
4643, 44, 45ltleii 8050 . . . . . . . . 9 3 ≤ 4
47 3z 9271 . . . . . . . . . 10 3 ∈ ℤ
4847eluz1i 9524 . . . . . . . . 9 (4 ∈ (ℤ‘3) ↔ (4 ∈ ℤ ∧ 3 ≤ 4))
4942, 46, 48mpbir2an 942 . . . . . . . 8 4 ∈ (ℤ‘3)
5049a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘3))
514simp2bi 1013 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
52 0re 7948 . . . . . . . . 9 0 ∈ ℝ
53 ltle 8035 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5452, 5, 53sylancr 414 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5551, 54mpd 13 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
564simp3bi 1014 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
575, 41, 50, 55, 56leexp2rd 10669 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑3))
58 6re 8989 . . . . . . . 8 6 ∈ ℝ
5958a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
60 6pos 9009 . . . . . . . 8 0 < 6
6160a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
62 lediv1 8815 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑3) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
6337, 14, 59, 61, 62syl112anc 1242 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
6457, 63mpbid 147 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6))
6533, 39, 17, 40, 64ltletrd 8370 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑3) / 6))
6632, 33, 17, 35, 65lelttrd 8072 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑3) / 6))
6731, 66eqbrtrd 4022 . 2 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6))
6810, 18, 17absdifltd 11171 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)))))
6917recnd 7976 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℂ)
7021, 69, 69subsub4d 8289 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))))
7114recnd 7976 . . . . . . . . . . 11 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℂ)
72 3cn 8983 . . . . . . . . . . . . 13 3 ∈ ℂ
73 3ap0 9004 . . . . . . . . . . . . 13 3 # 0
7472, 73pm3.2i 272 . . . . . . . . . . . 12 (3 ∈ ℂ ∧ 3 # 0)
75 2cn 8979 . . . . . . . . . . . . 13 2 ∈ ℂ
76 2ap0 9001 . . . . . . . . . . . . 13 2 # 0
7775, 76pm3.2i 272 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 # 0)
78 divdivap1 8669 . . . . . . . . . . . 12 (((𝐴↑3) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 # 0) ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
7974, 77, 78mp3an23 1329 . . . . . . . . . . 11 ((𝐴↑3) ∈ ℂ → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
8071, 79syl 14 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
81 3t2e6 9064 . . . . . . . . . . 11 (3 · 2) = 6
8281oveq2i 5880 . . . . . . . . . 10 ((𝐴↑3) / (3 · 2)) = ((𝐴↑3) / 6)
8380, 82eqtr2di 2227 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) = (((𝐴↑3) / 3) / 2))
8483, 83oveq12d 5887 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)))
85 3nn 9070 . . . . . . . . . . 11 3 ∈ ℕ
86 nndivre 8944 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴↑3) / 3) ∈ ℝ)
8714, 85, 86sylancl 413 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℝ)
8887recnd 7976 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℂ)
89882halvesd 9153 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)) = ((𝐴↑3) / 3))
9084, 89eqtrd 2210 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((𝐴↑3) / 3))
9190oveq2d 5885 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))) = (𝐴 − ((𝐴↑3) / 3)))
9270, 91eqtrd 2210 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 3)))
9392breq1d 4010 . . . 4 (𝐴 ∈ (0(,]1) → (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ↔ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)))
9421, 69npcand 8262 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) = 𝐴)
9594breq2d 4012 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) ↔ (sin‘𝐴) < 𝐴))
9693, 95anbi12d 473 . . 3 (𝐴 ∈ (0(,]1) → ((((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9768, 96bitrd 188 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9867, 97mpbid 147 1 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4000  cmpt 4061  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803  ici 7804   + caddc 7805   · cmul 7807  *cxr 7981   < clt 7982  cle 7983  cmin 8118   # cap 8528   / cdiv 8618  cn 8908  2c2 8959  3c3 8960  4c4 8961  6c6 8963  0cn0 9165  cz 9242  cuz 9517  (,]cioc 9876  cexp 10505  !cfa 10689  cim 10834  abscabs 10990  Σcsu 11345  sincsin 11636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ioc 9880  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642
This theorem is referenced by:  sin01gt0  11753  tangtx  13926  pigt3  13932
  Copyright terms: Public domain W3C validator