ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01bnd GIF version

Theorem sin01bnd 11939
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))

Proof of Theorem sin01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8090 . . . . . . . . 9 0 ∈ ℝ*
2 1re 8042 . . . . . . . . 9 1 ∈ ℝ
3 elioc2 10028 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 426 . . . . . . . 8 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1014 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 eqid 2196 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
76resin4p 11900 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
85, 7syl 14 . . . . . 6 (𝐴 ∈ (0(,]1) → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
98eqcomd 2202 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (sin‘𝐴))
105resincld 11905 . . . . . . 7 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℝ)
1110recnd 8072 . . . . . 6 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℂ)
12 3nn0 9284 . . . . . . . . . 10 3 ∈ ℕ0
13 reexpcl 10665 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
145, 12, 13sylancl 413 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℝ)
15 6nn 9173 . . . . . . . . 9 6 ∈ ℕ
16 nndivre 9043 . . . . . . . . 9 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑3) / 6) ∈ ℝ)
1714, 15, 16sylancl 413 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℝ)
185, 17resubcld 8424 . . . . . . 7 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
1918recnd 8072 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
20 ax-icn 7991 . . . . . . . . . 10 i ∈ ℂ
215recnd 8072 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
22 mulcl 8023 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
2320, 21, 22sylancr 414 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
24 4nn0 9285 . . . . . . . . 9 4 ∈ ℕ0
256eftlcl 11870 . . . . . . . . 9 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2623, 24, 25sylancl 413 . . . . . . . 8 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2726imcld 11121 . . . . . . 7 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2827recnd 8072 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2911, 19, 28subaddd 8372 . . . . 5 (𝐴 ∈ (0(,]1) → (((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6))) = (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ↔ ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (sin‘𝐴)))
309, 29mpbird 167 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6))) = (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3130fveq2d 5565 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) = (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
3228abscld 11363 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
3326abscld 11363 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
34 absimle 11266 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3526, 34syl 14 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
36 reexpcl 10665 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
375, 24, 36sylancl 413 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
38 nndivre 9043 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3937, 15, 38sylancl 413 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
406ef01bndlem 11938 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
4112a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 3 ∈ ℕ0)
42 4z 9373 . . . . . . . . 9 4 ∈ ℤ
43 3re 9081 . . . . . . . . . 10 3 ∈ ℝ
44 4re 9084 . . . . . . . . . 10 4 ∈ ℝ
45 3lt4 9180 . . . . . . . . . 10 3 < 4
4643, 44, 45ltleii 8146 . . . . . . . . 9 3 ≤ 4
47 3z 9372 . . . . . . . . . 10 3 ∈ ℤ
4847eluz1i 9625 . . . . . . . . 9 (4 ∈ (ℤ‘3) ↔ (4 ∈ ℤ ∧ 3 ≤ 4))
4942, 46, 48mpbir2an 944 . . . . . . . 8 4 ∈ (ℤ‘3)
5049a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘3))
514simp2bi 1015 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
52 0re 8043 . . . . . . . . 9 0 ∈ ℝ
53 ltle 8131 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5452, 5, 53sylancr 414 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5551, 54mpd 13 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
564simp3bi 1016 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
575, 41, 50, 55, 56leexp2rd 10812 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑3))
58 6re 9088 . . . . . . . 8 6 ∈ ℝ
5958a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
60 6pos 9108 . . . . . . . 8 0 < 6
6160a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
62 lediv1 8913 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑3) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
6337, 14, 59, 61, 62syl112anc 1253 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
6457, 63mpbid 147 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6))
6533, 39, 17, 40, 64ltletrd 8467 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑3) / 6))
6632, 33, 17, 35, 65lelttrd 8168 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑3) / 6))
6731, 66eqbrtrd 4056 . 2 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6))
6810, 18, 17absdifltd 11360 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)))))
6917recnd 8072 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℂ)
7021, 69, 69subsub4d 8385 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))))
7114recnd 8072 . . . . . . . . . . 11 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℂ)
72 3cn 9082 . . . . . . . . . . . . 13 3 ∈ ℂ
73 3ap0 9103 . . . . . . . . . . . . 13 3 # 0
7472, 73pm3.2i 272 . . . . . . . . . . . 12 (3 ∈ ℂ ∧ 3 # 0)
75 2cn 9078 . . . . . . . . . . . . 13 2 ∈ ℂ
76 2ap0 9100 . . . . . . . . . . . . 13 2 # 0
7775, 76pm3.2i 272 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 # 0)
78 divdivap1 8767 . . . . . . . . . . . 12 (((𝐴↑3) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 # 0) ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
7974, 77, 78mp3an23 1340 . . . . . . . . . . 11 ((𝐴↑3) ∈ ℂ → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
8071, 79syl 14 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
81 3t2e6 9164 . . . . . . . . . . 11 (3 · 2) = 6
8281oveq2i 5936 . . . . . . . . . 10 ((𝐴↑3) / (3 · 2)) = ((𝐴↑3) / 6)
8380, 82eqtr2di 2246 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) = (((𝐴↑3) / 3) / 2))
8483, 83oveq12d 5943 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)))
85 3nn 9170 . . . . . . . . . . 11 3 ∈ ℕ
86 nndivre 9043 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴↑3) / 3) ∈ ℝ)
8714, 85, 86sylancl 413 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℝ)
8887recnd 8072 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℂ)
89882halvesd 9254 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)) = ((𝐴↑3) / 3))
9084, 89eqtrd 2229 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((𝐴↑3) / 3))
9190oveq2d 5941 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))) = (𝐴 − ((𝐴↑3) / 3)))
9270, 91eqtrd 2229 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 3)))
9392breq1d 4044 . . . 4 (𝐴 ∈ (0(,]1) → (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ↔ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)))
9421, 69npcand 8358 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) = 𝐴)
9594breq2d 4046 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) ↔ (sin‘𝐴) < 𝐴))
9693, 95anbi12d 473 . . 3 (𝐴 ∈ (0(,]1) → ((((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9768, 96bitrd 188 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9867, 97mpbid 147 1 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897  ici 7898   + caddc 7899   · cmul 7901  *cxr 8077   < clt 8078  cle 8079  cmin 8214   # cap 8625   / cdiv 8716  cn 9007  2c2 9058  3c3 9059  4c4 9060  6c6 9062  0cn0 9266  cz 9343  cuz 9618  (,]cioc 9981  cexp 10647  !cfa 10834  cim 11023  abscabs 11179  Σcsu 11535  sincsin 11826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ioc 9985  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-ihash 10885  df-shft 10997  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-sin 11832
This theorem is referenced by:  sinltxirr  11943  sin01gt0  11944  tangtx  15158  pigt3  15164
  Copyright terms: Public domain W3C validator