ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01bnd GIF version

Theorem sin01bnd 11500
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))

Proof of Theorem sin01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7836 . . . . . . . . 9 0 ∈ ℝ*
2 1re 7789 . . . . . . . . 9 1 ∈ ℝ
3 elioc2 9749 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 423 . . . . . . . 8 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 997 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 eqid 2140 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
76resin4p 11461 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
85, 7syl 14 . . . . . 6 (𝐴 ∈ (0(,]1) → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
98eqcomd 2146 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (sin‘𝐴))
105resincld 11466 . . . . . . 7 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℝ)
1110recnd 7818 . . . . . 6 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℂ)
12 3nn0 9019 . . . . . . . . . 10 3 ∈ ℕ0
13 reexpcl 10341 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
145, 12, 13sylancl 410 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℝ)
15 6nn 8909 . . . . . . . . 9 6 ∈ ℕ
16 nndivre 8780 . . . . . . . . 9 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑3) / 6) ∈ ℝ)
1714, 15, 16sylancl 410 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℝ)
185, 17resubcld 8167 . . . . . . 7 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
1918recnd 7818 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
20 ax-icn 7739 . . . . . . . . . 10 i ∈ ℂ
215recnd 7818 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
22 mulcl 7771 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
2320, 21, 22sylancr 411 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
24 4nn0 9020 . . . . . . . . 9 4 ∈ ℕ0
256eftlcl 11431 . . . . . . . . 9 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2623, 24, 25sylancl 410 . . . . . . . 8 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2726imcld 10743 . . . . . . 7 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2827recnd 7818 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2911, 19, 28subaddd 8115 . . . . 5 (𝐴 ∈ (0(,]1) → (((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6))) = (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ↔ ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (sin‘𝐴)))
309, 29mpbird 166 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6))) = (ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3130fveq2d 5433 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) = (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
3228abscld 10985 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
3326abscld 10985 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
34 absimle 10888 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3526, 34syl 14 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
36 reexpcl 10341 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
375, 24, 36sylancl 410 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
38 nndivre 8780 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3937, 15, 38sylancl 410 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
406ef01bndlem 11499 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
4112a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 3 ∈ ℕ0)
42 4z 9108 . . . . . . . . 9 4 ∈ ℤ
43 3re 8818 . . . . . . . . . 10 3 ∈ ℝ
44 4re 8821 . . . . . . . . . 10 4 ∈ ℝ
45 3lt4 8916 . . . . . . . . . 10 3 < 4
4643, 44, 45ltleii 7890 . . . . . . . . 9 3 ≤ 4
47 3z 9107 . . . . . . . . . 10 3 ∈ ℤ
4847eluz1i 9357 . . . . . . . . 9 (4 ∈ (ℤ‘3) ↔ (4 ∈ ℤ ∧ 3 ≤ 4))
4942, 46, 48mpbir2an 927 . . . . . . . 8 4 ∈ (ℤ‘3)
5049a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘3))
514simp2bi 998 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
52 0re 7790 . . . . . . . . 9 0 ∈ ℝ
53 ltle 7875 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5452, 5, 53sylancr 411 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5551, 54mpd 13 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
564simp3bi 999 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
575, 41, 50, 55, 56leexp2rd 10485 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑3))
58 6re 8825 . . . . . . . 8 6 ∈ ℝ
5958a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
60 6pos 8845 . . . . . . . 8 0 < 6
6160a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
62 lediv1 8651 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑3) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
6337, 14, 59, 61, 62syl112anc 1221 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)))
6457, 63mpbid 146 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6))
6533, 39, 17, 40, 64ltletrd 8209 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑3) / 6))
6632, 33, 17, 35, 65lelttrd 7911 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℑ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑3) / 6))
6731, 66eqbrtrd 3958 . 2 (𝐴 ∈ (0(,]1) → (abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6))
6810, 18, 17absdifltd 10982 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)))))
6917recnd 7818 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈ ℂ)
7021, 69, 69subsub4d 8128 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))))
7114recnd 7818 . . . . . . . . . . 11 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℂ)
72 3cn 8819 . . . . . . . . . . . . 13 3 ∈ ℂ
73 3ap0 8840 . . . . . . . . . . . . 13 3 # 0
7472, 73pm3.2i 270 . . . . . . . . . . . 12 (3 ∈ ℂ ∧ 3 # 0)
75 2cn 8815 . . . . . . . . . . . . 13 2 ∈ ℂ
76 2ap0 8837 . . . . . . . . . . . . 13 2 # 0
7775, 76pm3.2i 270 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 # 0)
78 divdivap1 8507 . . . . . . . . . . . 12 (((𝐴↑3) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 # 0) ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
7974, 77, 78mp3an23 1308 . . . . . . . . . . 11 ((𝐴↑3) ∈ ℂ → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
8071, 79syl 14 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 · 2)))
81 3t2e6 8900 . . . . . . . . . . 11 (3 · 2) = 6
8281oveq2i 5793 . . . . . . . . . 10 ((𝐴↑3) / (3 · 2)) = ((𝐴↑3) / 6)
8380, 82eqtr2di 2190 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) = (((𝐴↑3) / 3) / 2))
8483, 83oveq12d 5800 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)))
85 3nn 8906 . . . . . . . . . . 11 3 ∈ ℕ
86 nndivre 8780 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴↑3) / 3) ∈ ℝ)
8714, 85, 86sylancl 410 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℝ)
8887recnd 7818 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℂ)
89882halvesd 8989 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)) = ((𝐴↑3) / 3))
9084, 89eqtrd 2173 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((𝐴↑3) / 3))
9190oveq2d 5798 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))) = (𝐴 − ((𝐴↑3) / 3)))
9270, 91eqtrd 2173 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 3)))
9392breq1d 3947 . . . 4 (𝐴 ∈ (0(,]1) → (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ↔ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)))
9421, 69npcand 8101 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) = 𝐴)
9594breq2d 3949 . . . 4 (𝐴 ∈ (0(,]1) → ((sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) ↔ (sin‘𝐴) < 𝐴))
9693, 95anbi12d 465 . . 3 (𝐴 ∈ (0(,]1) → ((((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9768, 96bitrd 187 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((sin‘𝐴) − (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)))
9867, 97mpbid 146 1 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481   class class class wbr 3937  cmpt 3997  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644  1c1 7645  ici 7646   + caddc 7647   · cmul 7649  *cxr 7823   < clt 7824  cle 7825  cmin 7957   # cap 8367   / cdiv 8456  cn 8744  2c2 8795  3c3 8796  4c4 8797  6c6 8799  0cn0 9001  cz 9078  cuz 9350  (,]cioc 9702  cexp 10323  !cfa 10503  cim 10645  abscabs 10801  Σcsu 11154  sincsin 11387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ioc 9706  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393
This theorem is referenced by:  sin01gt0  11504  tangtx  12967  pigt3  12973
  Copyright terms: Public domain W3C validator