| Step | Hyp | Ref
| Expression |
| 1 | | 0xr 8073 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
| 2 | | 1re 8025 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 3 | | elioc2 10011 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1)) |
| 5 | 4 | simp1bi 1014 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℝ) |
| 6 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) |
| 7 | 6 | resin4p 11883 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))) |
| 8 | 5, 7 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) →
(sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))) |
| 9 | 8 | eqcomd 2202 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (sin‘𝐴)) |
| 10 | 5 | resincld 11888 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) →
(sin‘𝐴) ∈
ℝ) |
| 11 | 10 | recnd 8055 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) →
(sin‘𝐴) ∈
ℂ) |
| 12 | | 3nn0 9267 |
. . . . . . . . . 10
⊢ 3 ∈
ℕ0 |
| 13 | | reexpcl 10648 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 3 ∈
ℕ0) → (𝐴↑3) ∈ ℝ) |
| 14 | 5, 12, 13 | sylancl 413 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈
ℝ) |
| 15 | | 6nn 9156 |
. . . . . . . . 9
⊢ 6 ∈
ℕ |
| 16 | | nndivre 9026 |
. . . . . . . . 9
⊢ (((𝐴↑3) ∈ ℝ ∧ 6
∈ ℕ) → ((𝐴↑3) / 6) ∈
ℝ) |
| 17 | 14, 15, 16 | sylancl 413 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈
ℝ) |
| 18 | 5, 17 | resubcld 8407 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈
ℝ) |
| 19 | 18 | recnd 8055 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 6)) ∈
ℂ) |
| 20 | | ax-icn 7974 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
| 21 | 5 | recnd 8055 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℂ) |
| 22 | | mulcl 8006 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) |
| 23 | 20, 21, 22 | sylancr 414 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → (i
· 𝐴) ∈
ℂ) |
| 24 | | 4nn0 9268 |
. . . . . . . . 9
⊢ 4 ∈
ℕ0 |
| 25 | 6 | eftlcl 11853 |
. . . . . . . . 9
⊢ (((i
· 𝐴) ∈ ℂ
∧ 4 ∈ ℕ0) → Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
| 26 | 23, 24, 25 | sylancl 413 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) →
Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
| 27 | 26 | imcld 11104 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) →
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ) |
| 28 | 27 | recnd 8055 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) →
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ) |
| 29 | 11, 19, 28 | subaddd 8355 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) →
(((sin‘𝐴) −
(𝐴 − ((𝐴↑3) / 6))) =
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ↔ ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (sin‘𝐴))) |
| 30 | 9, 29 | mpbird 167 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
((sin‘𝐴) −
(𝐴 − ((𝐴↑3) / 6))) =
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) |
| 31 | 30 | fveq2d 5562 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(abs‘((sin‘𝐴)
− (𝐴 − ((𝐴↑3) / 6)))) =
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))) |
| 32 | 28 | abscld 11346 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ) |
| 33 | 26 | abscld 11346 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ) |
| 34 | | absimle 11249 |
. . . . 5
⊢
(Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ →
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) |
| 35 | 26, 34 | syl 14 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) |
| 36 | | reexpcl 10648 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 4 ∈
ℕ0) → (𝐴↑4) ∈ ℝ) |
| 37 | 5, 24, 36 | sylancl 413 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈
ℝ) |
| 38 | | nndivre 9026 |
. . . . . 6
⊢ (((𝐴↑4) ∈ ℝ ∧ 6
∈ ℕ) → ((𝐴↑4) / 6) ∈
ℝ) |
| 39 | 37, 15, 38 | sylancl 413 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈
ℝ) |
| 40 | 6 | ef01bndlem 11921 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6)) |
| 41 | 12 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 3 ∈
ℕ0) |
| 42 | | 4z 9356 |
. . . . . . . . 9
⊢ 4 ∈
ℤ |
| 43 | | 3re 9064 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
| 44 | | 4re 9067 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
| 45 | | 3lt4 9163 |
. . . . . . . . . 10
⊢ 3 <
4 |
| 46 | 43, 44, 45 | ltleii 8129 |
. . . . . . . . 9
⊢ 3 ≤
4 |
| 47 | | 3z 9355 |
. . . . . . . . . 10
⊢ 3 ∈
ℤ |
| 48 | 47 | eluz1i 9608 |
. . . . . . . . 9
⊢ (4 ∈
(ℤ≥‘3) ↔ (4 ∈ ℤ ∧ 3 ≤
4)) |
| 49 | 42, 46, 48 | mpbir2an 944 |
. . . . . . . 8
⊢ 4 ∈
(ℤ≥‘3) |
| 50 | 49 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 4 ∈
(ℤ≥‘3)) |
| 51 | 4 | simp2bi 1015 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → 0 <
𝐴) |
| 52 | | 0re 8026 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
| 53 | | ltle 8114 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 54 | 52, 5, 53 | sylancr 414 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (0 <
𝐴 → 0 ≤ 𝐴)) |
| 55 | 51, 54 | mpd 13 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 ≤
𝐴) |
| 56 | 4 | simp3bi 1016 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1) |
| 57 | 5, 41, 50, 55, 56 | leexp2rd 10795 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑3)) |
| 58 | | 6re 9071 |
. . . . . . . 8
⊢ 6 ∈
ℝ |
| 59 | 58 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 6 ∈
ℝ) |
| 60 | | 6pos 9091 |
. . . . . . . 8
⊢ 0 <
6 |
| 61 | 60 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 <
6) |
| 62 | | lediv1 8896 |
. . . . . . 7
⊢ (((𝐴↑4) ∈ ℝ ∧
(𝐴↑3) ∈ ℝ
∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6))) |
| 63 | 37, 14, 59, 61, 62 | syl112anc 1253 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑3) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6))) |
| 64 | 57, 63 | mpbid 147 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑3) / 6)) |
| 65 | 33, 39, 17, 40, 64 | ltletrd 8450 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑3) / 6)) |
| 66 | 32, 33, 17, 35, 65 | lelttrd 8151 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(abs‘(ℑ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑3) / 6)) |
| 67 | 31, 66 | eqbrtrd 4055 |
. 2
⊢ (𝐴 ∈ (0(,]1) →
(abs‘((sin‘𝐴)
− (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6)) |
| 68 | 10, 18, 17 | absdifltd 11343 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
((abs‘((sin‘𝐴)
− (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))))) |
| 69 | 17 | recnd 8055 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) ∈
ℂ) |
| 70 | 21, 69, 69 | subsub4d 8368 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6)))) |
| 71 | 14 | recnd 8055 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈
ℂ) |
| 72 | | 3cn 9065 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℂ |
| 73 | | 3ap0 9086 |
. . . . . . . . . . . . 13
⊢ 3 #
0 |
| 74 | 72, 73 | pm3.2i 272 |
. . . . . . . . . . . 12
⊢ (3 ∈
ℂ ∧ 3 # 0) |
| 75 | | 2cn 9061 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
| 76 | | 2ap0 9083 |
. . . . . . . . . . . . 13
⊢ 2 #
0 |
| 77 | 75, 76 | pm3.2i 272 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℂ ∧ 2 # 0) |
| 78 | | divdivap1 8750 |
. . . . . . . . . . . 12
⊢ (((𝐴↑3) ∈ ℂ ∧ (3
∈ ℂ ∧ 3 # 0) ∧ (2 ∈ ℂ ∧ 2 # 0)) →
(((𝐴↑3) / 3) / 2) =
((𝐴↑3) / (3 ·
2))) |
| 79 | 74, 77, 78 | mp3an23 1340 |
. . . . . . . . . . 11
⊢ ((𝐴↑3) ∈ ℂ →
(((𝐴↑3) / 3) / 2) =
((𝐴↑3) / (3 ·
2))) |
| 80 | 71, 79 | syl 14 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) / 2) = ((𝐴↑3) / (3 ·
2))) |
| 81 | | 3t2e6 9147 |
. . . . . . . . . . 11
⊢ (3
· 2) = 6 |
| 82 | 81 | oveq2i 5933 |
. . . . . . . . . 10
⊢ ((𝐴↑3) / (3 · 2)) =
((𝐴↑3) /
6) |
| 83 | 80, 82 | eqtr2di 2246 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 6) = (((𝐴↑3) / 3) /
2)) |
| 84 | 83, 83 | oveq12d 5940 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) /
2))) |
| 85 | | 3nn 9153 |
. . . . . . . . . . 11
⊢ 3 ∈
ℕ |
| 86 | | nndivre 9026 |
. . . . . . . . . . 11
⊢ (((𝐴↑3) ∈ ℝ ∧ 3
∈ ℕ) → ((𝐴↑3) / 3) ∈
ℝ) |
| 87 | 14, 85, 86 | sylancl 413 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈
ℝ) |
| 88 | 87 | recnd 8055 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈
ℂ) |
| 89 | 88 | 2halvesd 9237 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → ((((𝐴↑3) / 3) / 2) + (((𝐴↑3) / 3) / 2)) = ((𝐴↑3) / 3)) |
| 90 | 84, 89 | eqtrd 2229 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 6) + ((𝐴↑3) / 6)) = ((𝐴↑3) / 3)) |
| 91 | 90 | oveq2d 5938 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − (((𝐴↑3) / 6) + ((𝐴↑3) / 6))) = (𝐴 − ((𝐴↑3) / 3))) |
| 92 | 70, 91 | eqtrd 2229 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 3))) |
| 93 | 92 | breq1d 4043 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ↔ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴))) |
| 94 | 21, 69 | npcand 8341 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) = 𝐴) |
| 95 | 94 | breq2d 4045 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
((sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6)) ↔ (sin‘𝐴) < 𝐴)) |
| 96 | 93, 95 | anbi12d 473 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((((𝐴 − ((𝐴↑3) / 6)) − ((𝐴↑3) / 6)) < (sin‘𝐴) ∧ (sin‘𝐴) < ((𝐴 − ((𝐴↑3) / 6)) + ((𝐴↑3) / 6))) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))) |
| 97 | 68, 96 | bitrd 188 |
. 2
⊢ (𝐴 ∈ (0(,]1) →
((abs‘((sin‘𝐴)
− (𝐴 − ((𝐴↑3) / 6)))) < ((𝐴↑3) / 6) ↔ ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))) |
| 98 | 67, 97 | mpbid 147 |
1
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) |