ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval2 GIF version

Theorem fzval2 9490
Description: An alternate way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))

Proof of Theorem fzval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzval 9489 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
2 zssre 8820 . . . . . . 7 ℤ ⊆ ℝ
3 ressxr 7594 . . . . . . 7 ℝ ⊆ ℝ*
42, 3sstri 3037 . . . . . 6 ℤ ⊆ ℝ*
54sseli 3024 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
64sseli 3024 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ*)
7 iccval 9401 . . . . 5 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
85, 6, 7syl2an 284 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
98ineq1d 3203 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀[,]𝑁) ∩ ℤ) = ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ))
10 inrab2 3275 . . . 4 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)}
11 sseqin2 3222 . . . . . 6 (ℤ ⊆ ℝ* ↔ (ℝ* ∩ ℤ) = ℤ)
124, 11mpbi 144 . . . . 5 (ℝ* ∩ ℤ) = ℤ
13 rabeq 2614 . . . . 5 ((ℝ* ∩ ℤ) = ℤ → {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
1412, 13ax-mp 7 . . . 4 {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
1510, 14eqtri 2109 . . 3 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
169, 15syl6req 2138 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ((𝑀[,]𝑁) ∩ ℤ))
171, 16eqtrd 2121 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wcel 1439  {crab 2364  cin 3001  wss 3002   class class class wbr 3853  (class class class)co 5668  cr 7412  *cxr 7584  cle 7586  cz 8813  [,]cicc 9372  ...cfz 9487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-iota 4995  df-fun 5032  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pnf 7587  df-mnf 7588  df-xr 7589  df-neg 7719  df-z 8814  df-icc 9376  df-fz 9488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator