ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval2 GIF version

Theorem fzval2 10203
Description: An alternate way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))

Proof of Theorem fzval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzval 10202 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
2 zssre 9449 . . . . . . 7 ℤ ⊆ ℝ
3 ressxr 8186 . . . . . . 7 ℝ ⊆ ℝ*
42, 3sstri 3233 . . . . . 6 ℤ ⊆ ℝ*
54sseli 3220 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
64sseli 3220 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ*)
7 iccval 10112 . . . . 5 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
85, 6, 7syl2an 289 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
98ineq1d 3404 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀[,]𝑁) ∩ ℤ) = ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ))
10 inrab2 3477 . . . 4 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)}
11 sseqin2 3423 . . . . . 6 (ℤ ⊆ ℝ* ↔ (ℝ* ∩ ℤ) = ℤ)
124, 11mpbi 145 . . . . 5 (ℝ* ∩ ℤ) = ℤ
13 rabeq 2791 . . . . 5 ((ℝ* ∩ ℤ) = ℤ → {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
1412, 13ax-mp 5 . . . 4 {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
1510, 14eqtri 2250 . . 3 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
169, 15eqtr2di 2279 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ((𝑀[,]𝑁) ∩ ℤ))
171, 16eqtrd 2262 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {crab 2512  cin 3196  wss 3197   class class class wbr 4082  (class class class)co 6000  cr 7994  *cxr 8176  cle 8178  cz 9442  [,]cicc 10083  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-neg 8316  df-z 9443  df-icc 10087  df-fz 10201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator