Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval2 GIF version

Theorem fzval2 9800
 Description: An alternate way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))

Proof of Theorem fzval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzval 9799 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
2 zssre 9068 . . . . . . 7 ℤ ⊆ ℝ
3 ressxr 7816 . . . . . . 7 ℝ ⊆ ℝ*
42, 3sstri 3106 . . . . . 6 ℤ ⊆ ℝ*
54sseli 3093 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
64sseli 3093 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ*)
7 iccval 9710 . . . . 5 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
85, 6, 7syl2an 287 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
98ineq1d 3276 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀[,]𝑁) ∩ ℤ) = ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ))
10 inrab2 3349 . . . 4 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)}
11 sseqin2 3295 . . . . . 6 (ℤ ⊆ ℝ* ↔ (ℝ* ∩ ℤ) = ℤ)
124, 11mpbi 144 . . . . 5 (ℝ* ∩ ℤ) = ℤ
13 rabeq 2678 . . . . 5 ((ℝ* ∩ ℤ) = ℤ → {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
1412, 13ax-mp 5 . . . 4 {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
1510, 14eqtri 2160 . . 3 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
169, 15syl6req 2189 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ((𝑀[,]𝑁) ∩ ℤ))
171, 16eqtrd 2172 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480  {crab 2420   ∩ cin 3070   ⊆ wss 3071   class class class wbr 3929  (class class class)co 5774  ℝcr 7626  ℝ*cxr 7806   ≤ cle 7808  ℤcz 9061  [,]cicc 9681  ...cfz 9797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-neg 7943  df-z 9062  df-icc 9685  df-fz 9798 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator