Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzval2 | GIF version |
Description: An alternate way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
fzval2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzval 9979 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
2 | zssre 9231 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
3 | ressxr 7975 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
4 | 2, 3 | sstri 3162 | . . . . . 6 ⊢ ℤ ⊆ ℝ* |
5 | 4 | sseli 3149 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*) |
6 | 4 | sseli 3149 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ*) |
7 | iccval 9889 | . . . . 5 ⊢ ((𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ*) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
8 | 5, 6, 7 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
9 | 8 | ineq1d 3333 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀[,]𝑁) ∩ ℤ) = ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ)) |
10 | inrab2 3406 | . . . 4 ⊢ ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ) = {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} | |
11 | sseqin2 3352 | . . . . . 6 ⊢ (ℤ ⊆ ℝ* ↔ (ℝ* ∩ ℤ) = ℤ) | |
12 | 4, 11 | mpbi 145 | . . . . 5 ⊢ (ℝ* ∩ ℤ) = ℤ |
13 | rabeq 2727 | . . . . 5 ⊢ ((ℝ* ∩ ℤ) = ℤ → {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} |
15 | 10, 14 | eqtri 2196 | . . 3 ⊢ ({𝑘 ∈ ℝ* ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∩ ℤ) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} |
16 | 9, 15 | eqtr2di 2225 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} = ((𝑀[,]𝑁) ∩ ℤ)) |
17 | 1, 16 | eqtrd 2208 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 {crab 2457 ∩ cin 3126 ⊆ wss 3127 class class class wbr 3998 (class class class)co 5865 ℝcr 7785 ℝ*cxr 7965 ≤ cle 7967 ℤcz 9224 [,]cicc 9860 ...cfz 9977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-neg 8105 df-z 9225 df-icc 9864 df-fz 9978 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |