| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetdmdm | GIF version | ||
| Description: Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmetdmdm | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetf 15024 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | 1 | fdmd 5480 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
| 3 | 2 | dmeqd 4925 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋)) |
| 4 | dmxpid 4945 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 5 | 3, 4 | eqtr2di 2279 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 × cxp 4717 dom cdm 4719 ‘cfv 5318 ℝ*cxr 8180 ∞Metcxmet 14500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-pnf 8183 df-mnf 8184 df-xr 8185 df-xmet 14508 |
| This theorem is referenced by: metdmdm 15031 xmetunirn 15032 |
| Copyright terms: Public domain | W3C validator |