ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressressg GIF version

Theorem ressressg 12696
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressressg ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressressg
StepHypRef Expression
1 eqidd 2194 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s 𝐴) = (𝑊s 𝐴))
2 eqidd 2194 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (Base‘𝑊) = (Base‘𝑊))
3 simp3 1001 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → 𝑊𝑍)
4 simp1 999 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → 𝐴𝑋)
51, 2, 3, 4ressbasd 12688 . . . . . 6 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
65ineq2d 3361 . . . . 5 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊s 𝐴))))
7 inass 3370 . . . . . 6 ((𝐵𝐴) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
8 incom 3352 . . . . . . 7 (𝐵𝐴) = (𝐴𝐵)
98ineq1i 3357 . . . . . 6 ((𝐵𝐴) ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊))
107, 9eqtr3i 2216 . . . . 5 (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = ((𝐴𝐵) ∩ (Base‘𝑊))
116, 10eqtr3di 2241 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) = ((𝐴𝐵) ∩ (Base‘𝑊)))
1211opeq2d 3812 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
1312oveq2d 5935 . 2 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊 sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
14 ressex 12686 . . . . 5 ((𝑊𝑍𝐴𝑋) → (𝑊s 𝐴) ∈ V)
153, 4, 14syl2anc 411 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s 𝐴) ∈ V)
16 simp2 1000 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → 𝐵𝑌)
17 ressvalsets 12685 . . . 4 (((𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
1815, 16, 17syl2anc 411 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
19 ressvalsets 12685 . . . . 5 ((𝑊𝑍𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
203, 4, 19syl2anc 411 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
2120oveq1d 5934 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
22 basendxnn 12677 . . . . 5 (Base‘ndx) ∈ ℕ
2322a1i 9 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (Base‘ndx) ∈ ℕ)
24 inex1g 4166 . . . . 5 (𝐴𝑋 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
254, 24syl 14 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐴 ∩ (Base‘𝑊)) ∈ V)
26 inex1g 4166 . . . . 5 (𝐵𝑌 → (𝐵 ∩ (Base‘(𝑊s 𝐴))) ∈ V)
2716, 26syl 14 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) ∈ V)
283, 23, 25, 27setsabsd 12660 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
2918, 21, 283eqtrd 2230 . 2 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊 sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
30 inex1g 4166 . . . 4 (𝐴𝑋 → (𝐴𝐵) ∈ V)
314, 30syl 14 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐴𝐵) ∈ V)
32 ressvalsets 12685 . . 3 ((𝑊𝑍 ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
333, 31, 32syl2anc 411 . 2 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3413, 29, 333eqtr4d 2236 1 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  cin 3153  cop 3622  cfv 5255  (class class class)co 5919  cn 8984  ndxcnx 12618   sSet csts 12619  Basecbs 12621  s cress 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629
This theorem is referenced by:  ressabsg  12697
  Copyright terms: Public domain W3C validator