ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressressg GIF version

Theorem ressressg 12778
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressressg ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressressg
StepHypRef Expression
1 eqidd 2197 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s 𝐴) = (𝑊s 𝐴))
2 eqidd 2197 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (Base‘𝑊) = (Base‘𝑊))
3 simp3 1001 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → 𝑊𝑍)
4 simp1 999 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → 𝐴𝑋)
51, 2, 3, 4ressbasd 12770 . . . . . 6 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
65ineq2d 3365 . . . . 5 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊s 𝐴))))
7 inass 3374 . . . . . 6 ((𝐵𝐴) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
8 incom 3356 . . . . . . 7 (𝐵𝐴) = (𝐴𝐵)
98ineq1i 3361 . . . . . 6 ((𝐵𝐴) ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊))
107, 9eqtr3i 2219 . . . . 5 (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = ((𝐴𝐵) ∩ (Base‘𝑊))
116, 10eqtr3di 2244 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) = ((𝐴𝐵) ∩ (Base‘𝑊)))
1211opeq2d 3816 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
1312oveq2d 5941 . 2 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊 sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
14 ressex 12768 . . . . 5 ((𝑊𝑍𝐴𝑋) → (𝑊s 𝐴) ∈ V)
153, 4, 14syl2anc 411 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s 𝐴) ∈ V)
16 simp2 1000 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → 𝐵𝑌)
17 ressvalsets 12767 . . . 4 (((𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
1815, 16, 17syl2anc 411 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
19 ressvalsets 12767 . . . . 5 ((𝑊𝑍𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
203, 4, 19syl2anc 411 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
2120oveq1d 5940 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
22 basendxnn 12759 . . . . 5 (Base‘ndx) ∈ ℕ
2322a1i 9 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (Base‘ndx) ∈ ℕ)
24 inex1g 4170 . . . . 5 (𝐴𝑋 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
254, 24syl 14 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐴 ∩ (Base‘𝑊)) ∈ V)
26 inex1g 4170 . . . . 5 (𝐵𝑌 → (𝐵 ∩ (Base‘(𝑊s 𝐴))) ∈ V)
2716, 26syl 14 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) ∈ V)
283, 23, 25, 27setsabsd 12742 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
2918, 21, 283eqtrd 2233 . 2 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊 sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
30 inex1g 4170 . . . 4 (𝐴𝑋 → (𝐴𝐵) ∈ V)
314, 30syl 14 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐴𝐵) ∈ V)
32 ressvalsets 12767 . . 3 ((𝑊𝑍 ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
333, 31, 32syl2anc 411 . 2 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3413, 29, 333eqtr4d 2239 1 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  cop 3626  cfv 5259  (class class class)co 5925  cn 9007  ndxcnx 12700   sSet csts 12701  Basecbs 12703  s cress 12704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711
This theorem is referenced by:  ressabsg  12779
  Copyright terms: Public domain W3C validator