Proof of Theorem ressressg
Step | Hyp | Ref
| Expression |
1 | | eqidd 2178 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴)) |
2 | | eqidd 2178 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (Base‘𝑊) = (Base‘𝑊)) |
3 | | simp3 999 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → 𝑊 ∈ 𝑍) |
4 | | simp1 997 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → 𝐴 ∈ 𝑋) |
5 | 1, 2, 3, 4 | ressbasd 12530 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 ↾s 𝐴))) |
6 | 5 | ineq2d 3338 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))) |
7 | | inass 3347 |
. . . . . 6
⊢ ((𝐵 ∩ 𝐴) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) |
8 | | incom 3329 |
. . . . . . 7
⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) |
9 | 8 | ineq1i 3334 |
. . . . . 6
⊢ ((𝐵 ∩ 𝐴) ∩ (Base‘𝑊)) = ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊)) |
10 | 7, 9 | eqtr3i 2200 |
. . . . 5
⊢ (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊)) |
11 | 6, 10 | eqtr3di 2225 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴))) = ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))) |
12 | 11 | opeq2d 3787 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉 =
〈(Base‘ndx), ((𝐴
∩ 𝐵) ∩
(Base‘𝑊))〉) |
13 | 12 | oveq2d 5894 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉) = (𝑊 sSet 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉)) |
14 | | ressex 12528 |
. . . . 5
⊢ ((𝑊 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) → (𝑊 ↾s 𝐴) ∈ V) |
15 | 3, 4, 14 | syl2anc 411 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 ↾s 𝐴) ∈ V) |
16 | | simp2 998 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → 𝐵 ∈ 𝑌) |
17 | | ressvalsets 12527 |
. . . 4
⊢ (((𝑊 ↾s 𝐴) ∈ V ∧ 𝐵 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = ((𝑊 ↾s 𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉)) |
18 | 15, 16, 17 | syl2anc 411 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = ((𝑊 ↾s 𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉)) |
19 | | ressvalsets 12527 |
. . . . 5
⊢ ((𝑊 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
20 | 3, 4, 19 | syl2anc 411 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
21 | 20 | oveq1d 5893 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉) = ((𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) sSet
〈(Base‘ndx), (𝐵
∩ (Base‘(𝑊
↾s 𝐴)))〉)) |
22 | | basendxnn 12521 |
. . . . 5
⊢
(Base‘ndx) ∈ ℕ |
23 | 22 | a1i 9 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (Base‘ndx) ∈
ℕ) |
24 | | inex1g 4141 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
25 | 4, 24 | syl 14 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
26 | | inex1g 4141 |
. . . . 5
⊢ (𝐵 ∈ 𝑌 → (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴))) ∈ V) |
27 | 16, 26 | syl 14 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴))) ∈ V) |
28 | 3, 23, 25, 27 | setsabsd 12504 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) sSet
〈(Base‘ndx), (𝐵
∩ (Base‘(𝑊
↾s 𝐴)))〉) = (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉)) |
29 | 18, 21, 28 | 3eqtrd 2214 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉)) |
30 | | inex1g 4141 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ 𝐵) ∈ V) |
31 | 4, 30 | syl 14 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐴 ∩ 𝐵) ∈ V) |
32 | | ressvalsets 12527 |
. . 3
⊢ ((𝑊 ∈ 𝑍 ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 sSet 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉)) |
33 | 3, 31, 32 | syl2anc 411 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 sSet 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉)) |
34 | 13, 29, 33 | 3eqtr4d 2220 |
1
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |