ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressressg GIF version

Theorem ressressg 12907
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressressg ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressressg
StepHypRef Expression
1 eqidd 2206 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s 𝐴) = (𝑊s 𝐴))
2 eqidd 2206 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (Base‘𝑊) = (Base‘𝑊))
3 simp3 1002 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → 𝑊𝑍)
4 simp1 1000 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝑊𝑍) → 𝐴𝑋)
51, 2, 3, 4ressbasd 12899 . . . . . 6 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
65ineq2d 3374 . . . . 5 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊s 𝐴))))
7 inass 3383 . . . . . 6 ((𝐵𝐴) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
8 incom 3365 . . . . . . 7 (𝐵𝐴) = (𝐴𝐵)
98ineq1i 3370 . . . . . 6 ((𝐵𝐴) ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊))
107, 9eqtr3i 2228 . . . . 5 (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = ((𝐴𝐵) ∩ (Base‘𝑊))
116, 10eqtr3di 2253 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) = ((𝐴𝐵) ∩ (Base‘𝑊)))
1211opeq2d 3826 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
1312oveq2d 5960 . 2 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊 sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
14 ressex 12897 . . . . 5 ((𝑊𝑍𝐴𝑋) → (𝑊s 𝐴) ∈ V)
153, 4, 14syl2anc 411 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s 𝐴) ∈ V)
16 simp2 1001 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → 𝐵𝑌)
17 ressvalsets 12896 . . . 4 (((𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
1815, 16, 17syl2anc 411 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
19 ressvalsets 12896 . . . . 5 ((𝑊𝑍𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
203, 4, 19syl2anc 411 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
2120oveq1d 5959 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
22 basendxnn 12888 . . . . 5 (Base‘ndx) ∈ ℕ
2322a1i 9 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (Base‘ndx) ∈ ℕ)
24 inex1g 4180 . . . . 5 (𝐴𝑋 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
254, 24syl 14 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐴 ∩ (Base‘𝑊)) ∈ V)
26 inex1g 4180 . . . . 5 (𝐵𝑌 → (𝐵 ∩ (Base‘(𝑊s 𝐴))) ∈ V)
2716, 26syl 14 . . . 4 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) ∈ V)
283, 23, 25, 27setsabsd 12871 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
2918, 21, 283eqtrd 2242 . 2 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊 sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
30 inex1g 4180 . . . 4 (𝐴𝑋 → (𝐴𝐵) ∈ V)
314, 30syl 14 . . 3 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝐴𝐵) ∈ V)
32 ressvalsets 12896 . . 3 ((𝑊𝑍 ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
333, 31, 32syl2anc 411 . 2 ((𝐴𝑋𝐵𝑌𝑊𝑍) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3413, 29, 333eqtr4d 2248 1 ((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2176  Vcvv 2772  cin 3165  cop 3636  cfv 5271  (class class class)co 5944  cn 9036  ndxcnx 12829   sSet csts 12830  Basecbs 12832  s cress 12833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840
This theorem is referenced by:  ressabsg  12908
  Copyright terms: Public domain W3C validator