Proof of Theorem ressressg
| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴)) |
| 2 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (Base‘𝑊) = (Base‘𝑊)) |
| 3 | | simp3 1001 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → 𝑊 ∈ 𝑍) |
| 4 | | simp1 999 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → 𝐴 ∈ 𝑋) |
| 5 | 1, 2, 3, 4 | ressbasd 12770 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 ↾s 𝐴))) |
| 6 | 5 | ineq2d 3365 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))) |
| 7 | | inass 3374 |
. . . . . 6
⊢ ((𝐵 ∩ 𝐴) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) |
| 8 | | incom 3356 |
. . . . . . 7
⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) |
| 9 | 8 | ineq1i 3361 |
. . . . . 6
⊢ ((𝐵 ∩ 𝐴) ∩ (Base‘𝑊)) = ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊)) |
| 10 | 7, 9 | eqtr3i 2219 |
. . . . 5
⊢ (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊)) |
| 11 | 6, 10 | eqtr3di 2244 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴))) = ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))) |
| 12 | 11 | opeq2d 3816 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉 =
〈(Base‘ndx), ((𝐴
∩ 𝐵) ∩
(Base‘𝑊))〉) |
| 13 | 12 | oveq2d 5941 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉) = (𝑊 sSet 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉)) |
| 14 | | ressex 12768 |
. . . . 5
⊢ ((𝑊 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) → (𝑊 ↾s 𝐴) ∈ V) |
| 15 | 3, 4, 14 | syl2anc 411 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 ↾s 𝐴) ∈ V) |
| 16 | | simp2 1000 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → 𝐵 ∈ 𝑌) |
| 17 | | ressvalsets 12767 |
. . . 4
⊢ (((𝑊 ↾s 𝐴) ∈ V ∧ 𝐵 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = ((𝑊 ↾s 𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉)) |
| 18 | 15, 16, 17 | syl2anc 411 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = ((𝑊 ↾s 𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉)) |
| 19 | | ressvalsets 12767 |
. . . . 5
⊢ ((𝑊 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 20 | 3, 4, 19 | syl2anc 411 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 21 | 20 | oveq1d 5940 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉) = ((𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) sSet
〈(Base‘ndx), (𝐵
∩ (Base‘(𝑊
↾s 𝐴)))〉)) |
| 22 | | basendxnn 12759 |
. . . . 5
⊢
(Base‘ndx) ∈ ℕ |
| 23 | 22 | a1i 9 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (Base‘ndx) ∈
ℕ) |
| 24 | | inex1g 4170 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
| 25 | 4, 24 | syl 14 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
| 26 | | inex1g 4170 |
. . . . 5
⊢ (𝐵 ∈ 𝑌 → (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴))) ∈ V) |
| 27 | 16, 26 | syl 14 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴))) ∈ V) |
| 28 | 3, 23, 25, 27 | setsabsd 12742 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) sSet
〈(Base‘ndx), (𝐵
∩ (Base‘(𝑊
↾s 𝐴)))〉) = (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉)) |
| 29 | 18, 21, 28 | 3eqtrd 2233 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘(𝑊 ↾s 𝐴)))〉)) |
| 30 | | inex1g 4170 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ 𝐵) ∈ V) |
| 31 | 4, 30 | syl 14 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝐴 ∩ 𝐵) ∈ V) |
| 32 | | ressvalsets 12767 |
. . 3
⊢ ((𝑊 ∈ 𝑍 ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 sSet 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉)) |
| 33 | 3, 31, 32 | syl2anc 411 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 sSet 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉)) |
| 34 | 13, 29, 33 | 3eqtr4d 2239 |
1
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |