ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval3d GIF version

Theorem ressval3d 12690
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
ressval3d.r 𝑅 = (𝑆s 𝐴)
ressval3d.b 𝐵 = (Base‘𝑆)
ressval3d.e 𝐸 = (Base‘ndx)
ressval3d.s (𝜑𝑆𝑉)
ressval3d.f (𝜑 → Fun 𝑆)
ressval3d.d (𝜑𝐸 ∈ dom 𝑆)
ressval3d.u (𝜑𝐴𝐵)
Assertion
Ref Expression
ressval3d (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.r . . 3 𝑅 = (𝑆s 𝐴)
2 ressval3d.s . . . 4 (𝜑𝑆𝑉)
3 ressval3d.b . . . . . 6 𝐵 = (Base‘𝑆)
4 basfn 12676 . . . . . . 7 Base Fn V
52elexd 2773 . . . . . . 7 (𝜑𝑆 ∈ V)
6 funfvex 5571 . . . . . . . 8 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
76funfni 5354 . . . . . . 7 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
84, 5, 7sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑆) ∈ V)
93, 8eqeltrid 2280 . . . . 5 (𝜑𝐵 ∈ V)
10 ressval3d.u . . . . 5 (𝜑𝐴𝐵)
119, 10ssexd 4169 . . . 4 (𝜑𝐴 ∈ V)
12 ressvalsets 12682 . . . 4 ((𝑆𝑉𝐴 ∈ V) → (𝑆s 𝐴) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
132, 11, 12syl2anc 411 . . 3 (𝜑 → (𝑆s 𝐴) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
141, 13eqtrid 2238 . 2 (𝜑𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
15 ressval3d.e . . . . 5 𝐸 = (Base‘ndx)
1615a1i 9 . . . 4 (𝜑𝐸 = (Base‘ndx))
17 df-ss 3166 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
1810, 17sylib 122 . . . . 5 (𝜑 → (𝐴𝐵) = 𝐴)
193ineq2i 3357 . . . . 5 (𝐴𝐵) = (𝐴 ∩ (Base‘𝑆))
2018, 19eqtr3di 2241 . . . 4 (𝜑𝐴 = (𝐴 ∩ (Base‘𝑆)))
2116, 20opeq12d 3812 . . 3 (𝜑 → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩)
2221oveq2d 5934 . 2 (𝜑 → (𝑆 sSet ⟨𝐸, 𝐴⟩) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
2314, 22eqtr4d 2229 1 (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cin 3152  wss 3153  cop 3621  dom cdm 4659  Fun wfun 5248   Fn wfn 5249  cfv 5254  (class class class)co 5918  ndxcnx 12615   sSet csts 12616  Basecbs 12618  s cress 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator