ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval3d GIF version

Theorem ressval3d 12989
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
ressval3d.r 𝑅 = (𝑆s 𝐴)
ressval3d.b 𝐵 = (Base‘𝑆)
ressval3d.e 𝐸 = (Base‘ndx)
ressval3d.s (𝜑𝑆𝑉)
ressval3d.f (𝜑 → Fun 𝑆)
ressval3d.d (𝜑𝐸 ∈ dom 𝑆)
ressval3d.u (𝜑𝐴𝐵)
Assertion
Ref Expression
ressval3d (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.r . . 3 𝑅 = (𝑆s 𝐴)
2 ressval3d.s . . . 4 (𝜑𝑆𝑉)
3 ressval3d.b . . . . . 6 𝐵 = (Base‘𝑆)
4 basfn 12975 . . . . . . 7 Base Fn V
52elexd 2787 . . . . . . 7 (𝜑𝑆 ∈ V)
6 funfvex 5611 . . . . . . . 8 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
76funfni 5390 . . . . . . 7 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
84, 5, 7sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑆) ∈ V)
93, 8eqeltrid 2293 . . . . 5 (𝜑𝐵 ∈ V)
10 ressval3d.u . . . . 5 (𝜑𝐴𝐵)
119, 10ssexd 4195 . . . 4 (𝜑𝐴 ∈ V)
12 ressvalsets 12981 . . . 4 ((𝑆𝑉𝐴 ∈ V) → (𝑆s 𝐴) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
132, 11, 12syl2anc 411 . . 3 (𝜑 → (𝑆s 𝐴) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
141, 13eqtrid 2251 . 2 (𝜑𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
15 ressval3d.e . . . . 5 𝐸 = (Base‘ndx)
1615a1i 9 . . . 4 (𝜑𝐸 = (Base‘ndx))
17 df-ss 3183 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
1810, 17sylib 122 . . . . 5 (𝜑 → (𝐴𝐵) = 𝐴)
193ineq2i 3375 . . . . 5 (𝐴𝐵) = (𝐴 ∩ (Base‘𝑆))
2018, 19eqtr3di 2254 . . . 4 (𝜑𝐴 = (𝐴 ∩ (Base‘𝑆)))
2116, 20opeq12d 3836 . . 3 (𝜑 → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩)
2221oveq2d 5978 . 2 (𝜑 → (𝑆 sSet ⟨𝐸, 𝐴⟩) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
2314, 22eqtr4d 2242 1 (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  cin 3169  wss 3170  cop 3641  dom cdm 4688  Fun wfun 5279   Fn wfn 5280  cfv 5285  (class class class)co 5962  ndxcnx 12914   sSet csts 12915  Basecbs 12917  s cress 12918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-inn 9067  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator