| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressval3d | GIF version | ||
| Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressval3d.r | ⊢ 𝑅 = (𝑆 ↾s 𝐴) |
| ressval3d.b | ⊢ 𝐵 = (Base‘𝑆) |
| ressval3d.e | ⊢ 𝐸 = (Base‘ndx) |
| ressval3d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| ressval3d.f | ⊢ (𝜑 → Fun 𝑆) |
| ressval3d.d | ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) |
| ressval3d.u | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ressval3d | ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressval3d.r | . . 3 ⊢ 𝑅 = (𝑆 ↾s 𝐴) | |
| 2 | ressval3d.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 3 | ressval3d.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | basfn 12975 | . . . . . . 7 ⊢ Base Fn V | |
| 5 | 2 | elexd 2787 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ V) |
| 6 | funfvex 5611 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V) | |
| 7 | 6 | funfni 5390 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V) |
| 8 | 4, 5, 7 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑆) ∈ V) |
| 9 | 3, 8 | eqeltrid 2293 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | ressval3d.u | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 11 | 9, 10 | ssexd 4195 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 12 | ressvalsets 12981 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑆 ↾s 𝐴) = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) | |
| 13 | 2, 11, 12 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐴) = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) |
| 14 | 1, 13 | eqtrid 2251 | . 2 ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) |
| 15 | ressval3d.e | . . . . 5 ⊢ 𝐸 = (Base‘ndx) | |
| 16 | 15 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐸 = (Base‘ndx)) |
| 17 | df-ss 3183 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 18 | 10, 17 | sylib 122 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐴) |
| 19 | 3 | ineq2i 3375 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ (Base‘𝑆)) |
| 20 | 18, 19 | eqtr3di 2254 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝐴 ∩ (Base‘𝑆))) |
| 21 | 16, 20 | opeq12d 3836 | . . 3 ⊢ (𝜑 → 〈𝐸, 𝐴〉 = 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉) |
| 22 | 21 | oveq2d 5978 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝐸, 𝐴〉) = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) |
| 23 | 14, 22 | eqtr4d 2242 | 1 ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3169 ⊆ wss 3170 〈cop 3641 dom cdm 4688 Fun wfun 5279 Fn wfn 5280 ‘cfv 5285 (class class class)co 5962 ndxcnx 12914 sSet csts 12915 Basecbs 12917 ↾s cress 12918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fn 5288 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-inn 9067 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-iress 12925 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |