ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval3d GIF version

Theorem ressval3d 13100
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
ressval3d.r 𝑅 = (𝑆s 𝐴)
ressval3d.b 𝐵 = (Base‘𝑆)
ressval3d.e 𝐸 = (Base‘ndx)
ressval3d.s (𝜑𝑆𝑉)
ressval3d.f (𝜑 → Fun 𝑆)
ressval3d.d (𝜑𝐸 ∈ dom 𝑆)
ressval3d.u (𝜑𝐴𝐵)
Assertion
Ref Expression
ressval3d (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.r . . 3 𝑅 = (𝑆s 𝐴)
2 ressval3d.s . . . 4 (𝜑𝑆𝑉)
3 ressval3d.b . . . . . 6 𝐵 = (Base‘𝑆)
4 basfn 13086 . . . . . . 7 Base Fn V
52elexd 2813 . . . . . . 7 (𝜑𝑆 ∈ V)
6 funfvex 5643 . . . . . . . 8 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
76funfni 5422 . . . . . . 7 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
84, 5, 7sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑆) ∈ V)
93, 8eqeltrid 2316 . . . . 5 (𝜑𝐵 ∈ V)
10 ressval3d.u . . . . 5 (𝜑𝐴𝐵)
119, 10ssexd 4223 . . . 4 (𝜑𝐴 ∈ V)
12 ressvalsets 13092 . . . 4 ((𝑆𝑉𝐴 ∈ V) → (𝑆s 𝐴) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
132, 11, 12syl2anc 411 . . 3 (𝜑 → (𝑆s 𝐴) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
141, 13eqtrid 2274 . 2 (𝜑𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
15 ressval3d.e . . . . 5 𝐸 = (Base‘ndx)
1615a1i 9 . . . 4 (𝜑𝐸 = (Base‘ndx))
17 df-ss 3210 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
1810, 17sylib 122 . . . . 5 (𝜑 → (𝐴𝐵) = 𝐴)
193ineq2i 3402 . . . . 5 (𝐴𝐵) = (𝐴 ∩ (Base‘𝑆))
2018, 19eqtr3di 2277 . . . 4 (𝜑𝐴 = (𝐴 ∩ (Base‘𝑆)))
2116, 20opeq12d 3864 . . 3 (𝜑 → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩)
2221oveq2d 6016 . 2 (𝜑 → (𝑆 sSet ⟨𝐸, 𝐴⟩) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
2314, 22eqtr4d 2265 1 (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  cop 3669  dom cdm 4718  Fun wfun 5311   Fn wfn 5312  cfv 5317  (class class class)co 6000  ndxcnx 13024   sSet csts 13025  Basecbs 13027  s cress 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator