ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval3d GIF version

Theorem ressval3d 12525
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
ressval3d.r 𝑅 = (𝑆s 𝐴)
ressval3d.b 𝐵 = (Base‘𝑆)
ressval3d.e 𝐸 = (Base‘ndx)
ressval3d.s (𝜑𝑆𝑉)
ressval3d.f (𝜑 → Fun 𝑆)
ressval3d.d (𝜑𝐸 ∈ dom 𝑆)
ressval3d.u (𝜑𝐴𝐵)
Assertion
Ref Expression
ressval3d (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.r . . 3 𝑅 = (𝑆s 𝐴)
2 ressval3d.s . . . 4 (𝜑𝑆𝑉)
3 ressval3d.b . . . . . 6 𝐵 = (Base‘𝑆)
4 basfn 12514 . . . . . . 7 Base Fn V
52elexd 2750 . . . . . . 7 (𝜑𝑆 ∈ V)
6 funfvex 5532 . . . . . . . 8 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
76funfni 5316 . . . . . . 7 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
84, 5, 7sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑆) ∈ V)
93, 8eqeltrid 2264 . . . . 5 (𝜑𝐵 ∈ V)
10 ressval3d.u . . . . 5 (𝜑𝐴𝐵)
119, 10ssexd 4143 . . . 4 (𝜑𝐴 ∈ V)
12 ressvalsets 12518 . . . 4 ((𝑆𝑉𝐴 ∈ V) → (𝑆s 𝐴) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
132, 11, 12syl2anc 411 . . 3 (𝜑 → (𝑆s 𝐴) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
141, 13eqtrid 2222 . 2 (𝜑𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
15 ressval3d.e . . . . 5 𝐸 = (Base‘ndx)
1615a1i 9 . . . 4 (𝜑𝐸 = (Base‘ndx))
17 df-ss 3142 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
1810, 17sylib 122 . . . . 5 (𝜑 → (𝐴𝐵) = 𝐴)
193ineq2i 3333 . . . . 5 (𝐴𝐵) = (𝐴 ∩ (Base‘𝑆))
2018, 19eqtr3di 2225 . . . 4 (𝜑𝐴 = (𝐴 ∩ (Base‘𝑆)))
2116, 20opeq12d 3786 . . 3 (𝜑 → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩)
2221oveq2d 5890 . 2 (𝜑 → (𝑆 sSet ⟨𝐸, 𝐴⟩) = (𝑆 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑆))⟩))
2314, 22eqtr4d 2213 1 (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2737  cin 3128  wss 3129  cop 3595  dom cdm 4626  Fun wfun 5210   Fn wfn 5211  cfv 5216  (class class class)co 5874  ndxcnx 12453   sSet csts 12454  Basecbs 12456  s cress 12457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-inn 8918  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-iress 12464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator