| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressval3d | GIF version | ||
| Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressval3d.r | ⊢ 𝑅 = (𝑆 ↾s 𝐴) |
| ressval3d.b | ⊢ 𝐵 = (Base‘𝑆) |
| ressval3d.e | ⊢ 𝐸 = (Base‘ndx) |
| ressval3d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| ressval3d.f | ⊢ (𝜑 → Fun 𝑆) |
| ressval3d.d | ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) |
| ressval3d.u | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ressval3d | ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressval3d.r | . . 3 ⊢ 𝑅 = (𝑆 ↾s 𝐴) | |
| 2 | ressval3d.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 3 | ressval3d.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | basfn 12809 | . . . . . . 7 ⊢ Base Fn V | |
| 5 | 2 | elexd 2784 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ V) |
| 6 | funfvex 5587 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V) | |
| 7 | 6 | funfni 5370 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V) |
| 8 | 4, 5, 7 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑆) ∈ V) |
| 9 | 3, 8 | eqeltrid 2291 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | ressval3d.u | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 11 | 9, 10 | ssexd 4183 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 12 | ressvalsets 12815 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑆 ↾s 𝐴) = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) | |
| 13 | 2, 11, 12 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐴) = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) |
| 14 | 1, 13 | eqtrid 2249 | . 2 ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) |
| 15 | ressval3d.e | . . . . 5 ⊢ 𝐸 = (Base‘ndx) | |
| 16 | 15 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐸 = (Base‘ndx)) |
| 17 | df-ss 3178 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 18 | 10, 17 | sylib 122 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐴) |
| 19 | 3 | ineq2i 3370 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ (Base‘𝑆)) |
| 20 | 18, 19 | eqtr3di 2252 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝐴 ∩ (Base‘𝑆))) |
| 21 | 16, 20 | opeq12d 3826 | . . 3 ⊢ (𝜑 → 〈𝐸, 𝐴〉 = 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉) |
| 22 | 21 | oveq2d 5950 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝐸, 𝐴〉) = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) |
| 23 | 14, 22 | eqtr4d 2240 | 1 ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∩ cin 3164 ⊆ wss 3165 〈cop 3635 dom cdm 4673 Fun wfun 5262 Fn wfn 5263 ‘cfv 5268 (class class class)co 5934 ndxcnx 12748 sSet csts 12749 Basecbs 12751 ↾s cress 12752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-inn 9019 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |