![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressval3d | GIF version |
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.) |
Ref | Expression |
---|---|
ressval3d.r | ⊢ 𝑅 = (𝑆 ↾s 𝐴) |
ressval3d.b | ⊢ 𝐵 = (Base‘𝑆) |
ressval3d.e | ⊢ 𝐸 = (Base‘ndx) |
ressval3d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
ressval3d.f | ⊢ (𝜑 → Fun 𝑆) |
ressval3d.d | ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) |
ressval3d.u | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ressval3d | ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressval3d.r | . . 3 ⊢ 𝑅 = (𝑆 ↾s 𝐴) | |
2 | ressval3d.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
3 | ressval3d.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
4 | basfn 12514 | . . . . . . 7 ⊢ Base Fn V | |
5 | 2 | elexd 2750 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ V) |
6 | funfvex 5532 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V) | |
7 | 6 | funfni 5316 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V) |
8 | 4, 5, 7 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑆) ∈ V) |
9 | 3, 8 | eqeltrid 2264 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
10 | ressval3d.u | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
11 | 9, 10 | ssexd 4143 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
12 | ressvalsets 12518 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑆 ↾s 𝐴) = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) | |
13 | 2, 11, 12 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐴) = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) |
14 | 1, 13 | eqtrid 2222 | . 2 ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) |
15 | ressval3d.e | . . . . 5 ⊢ 𝐸 = (Base‘ndx) | |
16 | 15 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐸 = (Base‘ndx)) |
17 | df-ss 3142 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
18 | 10, 17 | sylib 122 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐴) |
19 | 3 | ineq2i 3333 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ (Base‘𝑆)) |
20 | 18, 19 | eqtr3di 2225 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝐴 ∩ (Base‘𝑆))) |
21 | 16, 20 | opeq12d 3786 | . . 3 ⊢ (𝜑 → 〈𝐸, 𝐴〉 = 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉) |
22 | 21 | oveq2d 5890 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝐸, 𝐴〉) = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑆))〉)) |
23 | 14, 22 | eqtr4d 2213 | 1 ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2737 ∩ cin 3128 ⊆ wss 3129 〈cop 3595 dom cdm 4626 Fun wfun 5210 Fn wfn 5211 ‘cfv 5216 (class class class)co 5874 ndxcnx 12453 sSet csts 12454 Basecbs 12456 ↾s cress 12457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1re 7904 ax-addrcl 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-iota 5178 df-fun 5218 df-fn 5219 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-inn 8918 df-ndx 12459 df-slot 12460 df-base 12462 df-sets 12463 df-iress 12464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |