ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoim GIF version

Theorem nninfwlpoim 7239
Description: Decidable equality for implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
Assertion
Ref Expression
nninfwlpoim (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nninfwlpoim
Dummy variables 𝑓 𝑖 𝑗 𝑛 𝑞 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6726 . . . . 5 (𝑓 ∈ (2o𝑚 ω) → 𝑓:ω⟶2o)
21adantl 277 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → 𝑓:ω⟶2o)
3 fveqeq2 5564 . . . . . . . 8 (𝑞 = 𝑧 → ((𝑓𝑞) = ∅ ↔ (𝑓𝑧) = ∅))
43cbvrexv 2727 . . . . . . 7 (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅)
5 suceq 4434 . . . . . . . 8 (𝑗 = 𝑖 → suc 𝑗 = suc 𝑖)
65rexeqdv 2697 . . . . . . 7 (𝑗 = 𝑖 → (∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
74, 6bitrid 192 . . . . . 6 (𝑗 = 𝑖 → (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
87ifbid 3579 . . . . 5 (𝑗 = 𝑖 → if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
98cbvmptv 4126 . . . 4 (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
10 simpl 109 . . . . 5 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
11 equequ1 1723 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1211dcbid 839 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦DECID 𝑧 = 𝑦))
13 equequ2 1724 . . . . . . 7 (𝑦 = 𝑤 → (𝑧 = 𝑦𝑧 = 𝑤))
1413dcbid 839 . . . . . 6 (𝑦 = 𝑤 → (DECID 𝑧 = 𝑦DECID 𝑧 = 𝑤))
1512, 14cbvral2v 2739 . . . . 5 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
1610, 15sylib 122 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
172, 9, 16nninfwlpoimlemdc 7238 . . 3 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
1817ralrimiva 2567 . 2 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
19 omex 4626 . . 3 ω ∈ V
20 iswomnimap 7227 . . 3 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o))
2119, 20ax-mp 5 . 2 (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
2218, 21sylibr 134 1 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  c0 3447  ifcif 3558  cmpt 4091  suc csuc 4397  ωcom 4623  wf 5251  cfv 5255  (class class class)co 5919  1oc1o 6464  2oc2o 6465  𝑚 cmap 6704  xnninf 7180  WOmnicwomni 7224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1o 6471  df-2o 6472  df-er 6589  df-map 6706  df-en 6797  df-fin 6799  df-nninf 7181  df-womni 7225
This theorem is referenced by:  nninfwlpo  7240
  Copyright terms: Public domain W3C validator