| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfwlpoim | GIF version | ||
| Description: Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
| Ref | Expression |
|---|---|
| nninfwlpoim | ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6757 | . . . . 5 ⊢ (𝑓 ∈ (2o ↑𝑚 ω) → 𝑓:ω⟶2o) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → 𝑓:ω⟶2o) |
| 3 | fveqeq2 5585 | . . . . . . . 8 ⊢ (𝑞 = 𝑧 → ((𝑓‘𝑞) = ∅ ↔ (𝑓‘𝑧) = ∅)) | |
| 4 | 3 | cbvrexv 2739 | . . . . . . 7 ⊢ (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅) |
| 5 | suceq 4449 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → suc 𝑗 = suc 𝑖) | |
| 6 | 5 | rexeqdv 2709 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅)) |
| 7 | 4, 6 | bitrid 192 | . . . . . 6 ⊢ (𝑗 = 𝑖 → (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅)) |
| 8 | 7 | ifbid 3592 | . . . . 5 ⊢ (𝑗 = 𝑖 → if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 9 | 8 | cbvmptv 4140 | . . . 4 ⊢ (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 10 | simpl 109 | . . . . 5 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | |
| 11 | equequ1 1735 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | |
| 12 | 11 | dcbid 840 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑧 = 𝑦)) |
| 13 | equequ2 1736 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝑧 = 𝑦 ↔ 𝑧 = 𝑤)) | |
| 14 | 13 | dcbid 840 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (DECID 𝑧 = 𝑦 ↔ DECID 𝑧 = 𝑤)) |
| 15 | 12, 14 | cbvral2v 2751 | . . . . 5 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℕ∞ ∀𝑤 ∈ ℕ∞ DECID 𝑧 = 𝑤) |
| 16 | 10, 15 | sylib 122 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑧 ∈ ℕ∞ ∀𝑤 ∈ ℕ∞ DECID 𝑧 = 𝑤) |
| 17 | 2, 9, 16 | nninfwlpoimlemdc 7279 | . . 3 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 18 | 17 | ralrimiva 2579 | . 2 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 19 | omex 4641 | . . 3 ⊢ ω ∈ V | |
| 20 | iswomnimap 7268 | . . 3 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o)) | |
| 21 | 19, 20 | ax-mp 5 | . 2 ⊢ (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 22 | 18, 21 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 Vcvv 2772 ∅c0 3460 ifcif 3571 ↦ cmpt 4105 suc csuc 4412 ωcom 4638 ⟶wf 5267 ‘cfv 5271 (class class class)co 5944 1oc1o 6495 2oc2o 6496 ↑𝑚 cmap 6735 ℕ∞xnninf 7221 WOmnicwomni 7265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1o 6502 df-2o 6503 df-er 6620 df-map 6737 df-en 6828 df-fin 6830 df-nninf 7222 df-womni 7266 |
| This theorem is referenced by: nninfwlpo 7283 |
| Copyright terms: Public domain | W3C validator |