ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoim GIF version

Theorem nninfwlpoim 7302
Description: Decidable equality for implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
Assertion
Ref Expression
nninfwlpoim (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nninfwlpoim
Dummy variables 𝑓 𝑖 𝑗 𝑛 𝑞 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6775 . . . . 5 (𝑓 ∈ (2o𝑚 ω) → 𝑓:ω⟶2o)
21adantl 277 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → 𝑓:ω⟶2o)
3 fveqeq2 5603 . . . . . . . 8 (𝑞 = 𝑧 → ((𝑓𝑞) = ∅ ↔ (𝑓𝑧) = ∅))
43cbvrexv 2740 . . . . . . 7 (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅)
5 suceq 4462 . . . . . . . 8 (𝑗 = 𝑖 → suc 𝑗 = suc 𝑖)
65rexeqdv 2710 . . . . . . 7 (𝑗 = 𝑖 → (∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
74, 6bitrid 192 . . . . . 6 (𝑗 = 𝑖 → (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
87ifbid 3597 . . . . 5 (𝑗 = 𝑖 → if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
98cbvmptv 4151 . . . 4 (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
10 simpl 109 . . . . 5 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
11 equequ1 1736 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1211dcbid 840 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦DECID 𝑧 = 𝑦))
13 equequ2 1737 . . . . . . 7 (𝑦 = 𝑤 → (𝑧 = 𝑦𝑧 = 𝑤))
1413dcbid 840 . . . . . 6 (𝑦 = 𝑤 → (DECID 𝑧 = 𝑦DECID 𝑧 = 𝑤))
1512, 14cbvral2v 2752 . . . . 5 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
1610, 15sylib 122 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
172, 9, 16nninfwlpoimlemdc 7300 . . 3 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
1817ralrimiva 2580 . 2 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
19 omex 4654 . . 3 ω ∈ V
20 iswomnimap 7289 . . 3 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o))
2119, 20ax-mp 5 . 2 (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
2218, 21sylibr 134 1 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  c0 3464  ifcif 3575  cmpt 4116  suc csuc 4425  ωcom 4651  wf 5281  cfv 5285  (class class class)co 5962  1oc1o 6513  2oc2o 6514  𝑚 cmap 6753  xnninf 7242  WOmnicwomni 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1o 6520  df-2o 6521  df-er 6638  df-map 6755  df-en 6846  df-fin 6848  df-nninf 7243  df-womni 7287
This theorem is referenced by:  nninfwlpo  7304
  Copyright terms: Public domain W3C validator