ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoim GIF version

Theorem nninfwlpoim 7207
Description: Decidable equality for implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
Assertion
Ref Expression
nninfwlpoim (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nninfwlpoim
Dummy variables 𝑓 𝑖 𝑗 𝑛 𝑞 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6697 . . . . 5 (𝑓 ∈ (2o𝑚 ω) → 𝑓:ω⟶2o)
21adantl 277 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → 𝑓:ω⟶2o)
3 fveqeq2 5543 . . . . . . . 8 (𝑞 = 𝑧 → ((𝑓𝑞) = ∅ ↔ (𝑓𝑧) = ∅))
43cbvrexv 2719 . . . . . . 7 (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅)
5 suceq 4420 . . . . . . . 8 (𝑗 = 𝑖 → suc 𝑗 = suc 𝑖)
65rexeqdv 2693 . . . . . . 7 (𝑗 = 𝑖 → (∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
74, 6bitrid 192 . . . . . 6 (𝑗 = 𝑖 → (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
87ifbid 3570 . . . . 5 (𝑗 = 𝑖 → if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
98cbvmptv 4114 . . . 4 (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
10 simpl 109 . . . . 5 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
11 equequ1 1723 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1211dcbid 839 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦DECID 𝑧 = 𝑦))
13 equequ2 1724 . . . . . . 7 (𝑦 = 𝑤 → (𝑧 = 𝑦𝑧 = 𝑤))
1413dcbid 839 . . . . . 6 (𝑦 = 𝑤 → (DECID 𝑧 = 𝑦DECID 𝑧 = 𝑤))
1512, 14cbvral2v 2731 . . . . 5 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
1610, 15sylib 122 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
172, 9, 16nninfwlpoimlemdc 7206 . . 3 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
1817ralrimiva 2563 . 2 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
19 omex 4610 . . 3 ω ∈ V
20 iswomnimap 7195 . . 3 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o))
2119, 20ax-mp 5 . 2 (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
2218, 21sylibr 134 1 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2160  wral 2468  wrex 2469  Vcvv 2752  c0 3437  ifcif 3549  cmpt 4079  suc csuc 4383  ωcom 4607  wf 5231  cfv 5235  (class class class)co 5897  1oc1o 6435  2oc2o 6436  𝑚 cmap 6675  xnninf 7149  WOmnicwomni 7192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1o 6442  df-2o 6443  df-er 6560  df-map 6677  df-en 6768  df-fin 6770  df-nninf 7150  df-womni 7193
This theorem is referenced by:  nninfwlpo  7208
  Copyright terms: Public domain W3C validator