![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nninfwlpoim | GIF version |
Description: Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
Ref | Expression |
---|---|
nninfwlpoim | ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 6726 | . . . . 5 ⊢ (𝑓 ∈ (2o ↑𝑚 ω) → 𝑓:ω⟶2o) | |
2 | 1 | adantl 277 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → 𝑓:ω⟶2o) |
3 | fveqeq2 5564 | . . . . . . . 8 ⊢ (𝑞 = 𝑧 → ((𝑓‘𝑞) = ∅ ↔ (𝑓‘𝑧) = ∅)) | |
4 | 3 | cbvrexv 2727 | . . . . . . 7 ⊢ (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅) |
5 | suceq 4434 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → suc 𝑗 = suc 𝑖) | |
6 | 5 | rexeqdv 2697 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅)) |
7 | 4, 6 | bitrid 192 | . . . . . 6 ⊢ (𝑗 = 𝑖 → (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅)) |
8 | 7 | ifbid 3579 | . . . . 5 ⊢ (𝑗 = 𝑖 → if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅, ∅, 1o)) |
9 | 8 | cbvmptv 4126 | . . . 4 ⊢ (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅, ∅, 1o)) |
10 | simpl 109 | . . . . 5 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | |
11 | equequ1 1723 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | |
12 | 11 | dcbid 839 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑧 = 𝑦)) |
13 | equequ2 1724 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝑧 = 𝑦 ↔ 𝑧 = 𝑤)) | |
14 | 13 | dcbid 839 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (DECID 𝑧 = 𝑦 ↔ DECID 𝑧 = 𝑤)) |
15 | 12, 14 | cbvral2v 2739 | . . . . 5 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℕ∞ ∀𝑤 ∈ ℕ∞ DECID 𝑧 = 𝑤) |
16 | 10, 15 | sylib 122 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑧 ∈ ℕ∞ ∀𝑤 ∈ ℕ∞ DECID 𝑧 = 𝑤) |
17 | 2, 9, 16 | nninfwlpoimlemdc 7238 | . . 3 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
18 | 17 | ralrimiva 2567 | . 2 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
19 | omex 4626 | . . 3 ⊢ ω ∈ V | |
20 | iswomnimap 7227 | . . 3 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o)) | |
21 | 19, 20 | ax-mp 5 | . 2 ⊢ (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
22 | 18, 21 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 Vcvv 2760 ∅c0 3447 ifcif 3558 ↦ cmpt 4091 suc csuc 4397 ωcom 4623 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 1oc1o 6464 2oc2o 6465 ↑𝑚 cmap 6704 ℕ∞xnninf 7180 WOmnicwomni 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1o 6471 df-2o 6472 df-er 6589 df-map 6706 df-en 6797 df-fin 6799 df-nninf 7181 df-womni 7225 |
This theorem is referenced by: nninfwlpo 7240 |
Copyright terms: Public domain | W3C validator |