| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfwlpoim | GIF version | ||
| Description: Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
| Ref | Expression |
|---|---|
| nninfwlpoim | ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6775 | . . . . 5 ⊢ (𝑓 ∈ (2o ↑𝑚 ω) → 𝑓:ω⟶2o) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → 𝑓:ω⟶2o) |
| 3 | fveqeq2 5603 | . . . . . . . 8 ⊢ (𝑞 = 𝑧 → ((𝑓‘𝑞) = ∅ ↔ (𝑓‘𝑧) = ∅)) | |
| 4 | 3 | cbvrexv 2740 | . . . . . . 7 ⊢ (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅) |
| 5 | suceq 4462 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → suc 𝑗 = suc 𝑖) | |
| 6 | 5 | rexeqdv 2710 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅)) |
| 7 | 4, 6 | bitrid 192 | . . . . . 6 ⊢ (𝑗 = 𝑖 → (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅)) |
| 8 | 7 | ifbid 3597 | . . . . 5 ⊢ (𝑗 = 𝑖 → if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 9 | 8 | cbvmptv 4151 | . . . 4 ⊢ (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 10 | simpl 109 | . . . . 5 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | |
| 11 | equequ1 1736 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | |
| 12 | 11 | dcbid 840 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑧 = 𝑦)) |
| 13 | equequ2 1737 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝑧 = 𝑦 ↔ 𝑧 = 𝑤)) | |
| 14 | 13 | dcbid 840 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (DECID 𝑧 = 𝑦 ↔ DECID 𝑧 = 𝑤)) |
| 15 | 12, 14 | cbvral2v 2752 | . . . . 5 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℕ∞ ∀𝑤 ∈ ℕ∞ DECID 𝑧 = 𝑤) |
| 16 | 10, 15 | sylib 122 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑧 ∈ ℕ∞ ∀𝑤 ∈ ℕ∞ DECID 𝑧 = 𝑤) |
| 17 | 2, 9, 16 | nninfwlpoimlemdc 7300 | . . 3 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 18 | 17 | ralrimiva 2580 | . 2 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 19 | omex 4654 | . . 3 ⊢ ω ∈ V | |
| 20 | iswomnimap 7289 | . . 3 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o)) | |
| 21 | 19, 20 | ax-mp 5 | . 2 ⊢ (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 22 | 18, 21 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 Vcvv 2773 ∅c0 3464 ifcif 3575 ↦ cmpt 4116 suc csuc 4425 ωcom 4651 ⟶wf 5281 ‘cfv 5285 (class class class)co 5962 1oc1o 6513 2oc2o 6514 ↑𝑚 cmap 6753 ℕ∞xnninf 7242 WOmnicwomni 7286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1o 6520 df-2o 6521 df-er 6638 df-map 6755 df-en 6846 df-fin 6848 df-nninf 7243 df-womni 7287 |
| This theorem is referenced by: nninfwlpo 7304 |
| Copyright terms: Public domain | W3C validator |