| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfwlpoim | GIF version | ||
| Description: Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
| Ref | Expression |
|---|---|
| nninfwlpoim | ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6738 | . . . . 5 ⊢ (𝑓 ∈ (2o ↑𝑚 ω) → 𝑓:ω⟶2o) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → 𝑓:ω⟶2o) |
| 3 | fveqeq2 5570 | . . . . . . . 8 ⊢ (𝑞 = 𝑧 → ((𝑓‘𝑞) = ∅ ↔ (𝑓‘𝑧) = ∅)) | |
| 4 | 3 | cbvrexv 2730 | . . . . . . 7 ⊢ (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅) |
| 5 | suceq 4438 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → suc 𝑗 = suc 𝑖) | |
| 6 | 5 | rexeqdv 2700 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅)) |
| 7 | 4, 6 | bitrid 192 | . . . . . 6 ⊢ (𝑗 = 𝑖 → (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅)) |
| 8 | 7 | ifbid 3583 | . . . . 5 ⊢ (𝑗 = 𝑖 → if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 9 | 8 | cbvmptv 4130 | . . . 4 ⊢ (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑖(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 10 | simpl 109 | . . . . 5 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | |
| 11 | equequ1 1726 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | |
| 12 | 11 | dcbid 839 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑧 = 𝑦)) |
| 13 | equequ2 1727 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝑧 = 𝑦 ↔ 𝑧 = 𝑤)) | |
| 14 | 13 | dcbid 839 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (DECID 𝑧 = 𝑦 ↔ DECID 𝑧 = 𝑤)) |
| 15 | 12, 14 | cbvral2v 2742 | . . . . 5 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℕ∞ ∀𝑤 ∈ ℕ∞ DECID 𝑧 = 𝑤) |
| 16 | 10, 15 | sylib 122 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑧 ∈ ℕ∞ ∀𝑤 ∈ ℕ∞ DECID 𝑧 = 𝑤) |
| 17 | 2, 9, 16 | nninfwlpoimlemdc 7252 | . . 3 ⊢ ((∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 18 | 17 | ralrimiva 2570 | . 2 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 19 | omex 4630 | . . 3 ⊢ ω ∈ V | |
| 20 | iswomnimap 7241 | . . 3 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o)) | |
| 21 | 19, 20 | ax-mp 5 | . 2 ⊢ (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 22 | 18, 21 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ∅c0 3451 ifcif 3562 ↦ cmpt 4095 suc csuc 4401 ωcom 4627 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 1oc1o 6476 2oc2o 6477 ↑𝑚 cmap 6716 ℕ∞xnninf 7194 WOmnicwomni 7238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1o 6483 df-2o 6484 df-er 6601 df-map 6718 df-en 6809 df-fin 6811 df-nninf 7195 df-womni 7239 |
| This theorem is referenced by: nninfwlpo 7254 |
| Copyright terms: Public domain | W3C validator |