ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoim GIF version

Theorem nninfwlpoim 7178
Description: Decidable equality for implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
Assertion
Ref Expression
nninfwlpoim (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nninfwlpoim
Dummy variables 𝑓 𝑖 𝑗 𝑛 𝑞 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6672 . . . . 5 (𝑓 ∈ (2o𝑚 ω) → 𝑓:ω⟶2o)
21adantl 277 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → 𝑓:ω⟶2o)
3 fveqeq2 5526 . . . . . . . 8 (𝑞 = 𝑧 → ((𝑓𝑞) = ∅ ↔ (𝑓𝑧) = ∅))
43cbvrexv 2706 . . . . . . 7 (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅)
5 suceq 4404 . . . . . . . 8 (𝑗 = 𝑖 → suc 𝑗 = suc 𝑖)
65rexeqdv 2680 . . . . . . 7 (𝑗 = 𝑖 → (∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
74, 6bitrid 192 . . . . . 6 (𝑗 = 𝑖 → (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
87ifbid 3557 . . . . 5 (𝑗 = 𝑖 → if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
98cbvmptv 4101 . . . 4 (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
10 simpl 109 . . . . 5 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
11 equequ1 1712 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1211dcbid 838 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦DECID 𝑧 = 𝑦))
13 equequ2 1713 . . . . . . 7 (𝑦 = 𝑤 → (𝑧 = 𝑦𝑧 = 𝑤))
1413dcbid 838 . . . . . 6 (𝑦 = 𝑤 → (DECID 𝑧 = 𝑦DECID 𝑧 = 𝑤))
1512, 14cbvral2v 2718 . . . . 5 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
1610, 15sylib 122 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
172, 9, 16nninfwlpoimlemdc 7177 . . 3 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
1817ralrimiva 2550 . 2 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
19 omex 4594 . . 3 ω ∈ V
20 iswomnimap 7166 . . 3 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o))
2119, 20ax-mp 5 . 2 (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
2218, 21sylibr 134 1 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  Vcvv 2739  c0 3424  ifcif 3536  cmpt 4066  suc csuc 4367  ωcom 4591  wf 5214  cfv 5218  (class class class)co 5877  1oc1o 6412  2oc2o 6413  𝑚 cmap 6650  xnninf 7120  WOmnicwomni 7163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1o 6419  df-2o 6420  df-er 6537  df-map 6652  df-en 6743  df-fin 6745  df-nninf 7121  df-womni 7164
This theorem is referenced by:  nninfwlpo  7179
  Copyright terms: Public domain W3C validator