ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoim GIF version

Theorem nninfwlpoim 7253
Description: Decidable equality for implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
Assertion
Ref Expression
nninfwlpoim (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nninfwlpoim
Dummy variables 𝑓 𝑖 𝑗 𝑛 𝑞 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6738 . . . . 5 (𝑓 ∈ (2o𝑚 ω) → 𝑓:ω⟶2o)
21adantl 277 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → 𝑓:ω⟶2o)
3 fveqeq2 5570 . . . . . . . 8 (𝑞 = 𝑧 → ((𝑓𝑞) = ∅ ↔ (𝑓𝑧) = ∅))
43cbvrexv 2730 . . . . . . 7 (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅)
5 suceq 4438 . . . . . . . 8 (𝑗 = 𝑖 → suc 𝑗 = suc 𝑖)
65rexeqdv 2700 . . . . . . 7 (𝑗 = 𝑖 → (∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
74, 6bitrid 192 . . . . . 6 (𝑗 = 𝑖 → (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅))
87ifbid 3583 . . . . 5 (𝑗 = 𝑖 → if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
98cbvmptv 4130 . . . 4 (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o)) = (𝑖 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑖(𝑓𝑧) = ∅, ∅, 1o))
10 simpl 109 . . . . 5 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
11 equequ1 1726 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1211dcbid 839 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦DECID 𝑧 = 𝑦))
13 equequ2 1727 . . . . . . 7 (𝑦 = 𝑤 → (𝑧 = 𝑦𝑧 = 𝑤))
1413dcbid 839 . . . . . 6 (𝑦 = 𝑤 → (DECID 𝑧 = 𝑦DECID 𝑧 = 𝑤))
1512, 14cbvral2v 2742 . . . . 5 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
1610, 15sylib 122 . . . 4 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → ∀𝑧 ∈ ℕ𝑤 ∈ ℕ DECID 𝑧 = 𝑤)
172, 9, 16nninfwlpoimlemdc 7252 . . 3 ((∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦𝑓 ∈ (2o𝑚 ω)) → DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
1817ralrimiva 2570 . 2 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
19 omex 4630 . . 3 ω ∈ V
20 iswomnimap 7241 . . 3 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o))
2119, 20ax-mp 5 . 2 (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
2218, 21sylibr 134 1 (∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  c0 3451  ifcif 3562  cmpt 4095  suc csuc 4401  ωcom 4627  wf 5255  cfv 5259  (class class class)co 5925  1oc1o 6476  2oc2o 6477  𝑚 cmap 6716  xnninf 7194  WOmnicwomni 7238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-er 6601  df-map 6718  df-en 6809  df-fin 6811  df-nninf 7195  df-womni 7239
This theorem is referenced by:  nninfwlpo  7254
  Copyright terms: Public domain W3C validator