Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infpn2 | GIF version |
Description: There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12287, so by unbendc 12383 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpn2.1 | ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} |
Ref | Expression |
---|---|
infpn2 | ⊢ 𝑆 ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 9500 | . . . . . . 7 ⊢ (𝑟 ∈ (ℤ≥‘2) → 𝑟 ∈ ℕ) | |
2 | 1 | adantr 274 | . . . . . 6 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) |
3 | simpll 519 | . . . . . 6 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) | |
4 | eluz2b2 9537 | . . . . . . . 8 ⊢ (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟)) | |
5 | 4 | a1i 9 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟))) |
6 | nndivdvds 11732 | . . . . . . . . 9 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑚 ∥ 𝑟 ↔ (𝑟 / 𝑚) ∈ ℕ)) | |
7 | 6 | imbi1d 230 | . . . . . . . 8 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
8 | 7 | ralbidva 2461 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
9 | 5, 8 | anbi12d 465 | . . . . . 6 ⊢ (𝑟 ∈ ℕ → ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
10 | 2, 3, 9 | pm5.21nii 694 | . . . . 5 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
11 | anass 399 | . . . . 5 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) | |
12 | 10, 11 | bitri 183 | . . . 4 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
13 | isprm2 12045 | . . . 4 ⊢ (𝑟 ∈ ℙ ↔ (𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) | |
14 | breq2 3985 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (1 < 𝑛 ↔ 1 < 𝑟)) | |
15 | oveq1 5848 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑛 / 𝑚) = (𝑟 / 𝑚)) | |
16 | 15 | eleq1d 2234 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑟 / 𝑚) ∈ ℕ)) |
17 | equequ2 1701 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑚 = 𝑛 ↔ 𝑚 = 𝑟)) | |
18 | 17 | orbi2d 780 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑟))) |
19 | 16, 18 | imbi12d 233 | . . . . . . 7 ⊢ (𝑛 = 𝑟 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
20 | 19 | ralbidv 2465 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
21 | 14, 20 | anbi12d 465 | . . . . 5 ⊢ (𝑛 = 𝑟 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
22 | infpn2.1 | . . . . 5 ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} | |
23 | 21, 22 | elrab2 2884 | . . . 4 ⊢ (𝑟 ∈ 𝑆 ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
24 | 12, 13, 23 | 3bitr4i 211 | . . 3 ⊢ (𝑟 ∈ ℙ ↔ 𝑟 ∈ 𝑆) |
25 | 24 | eqriv 2162 | . 2 ⊢ ℙ = 𝑆 |
26 | prminf 12384 | . 2 ⊢ ℙ ≈ ℕ | |
27 | 25, 26 | eqbrtrri 4004 | 1 ⊢ 𝑆 ≈ ℕ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∀wral 2443 {crab 2447 class class class wbr 3981 ‘cfv 5187 (class class class)co 5841 ≈ cen 6700 1c1 7750 < clt 7929 / cdiv 8564 ℕcn 8853 2c2 8904 ℤ≥cuz 9462 ∥ cdvds 11723 ℙcprime 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 ax-caucvg 7869 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-1o 6380 df-2o 6381 df-er 6497 df-pm 6613 df-en 6703 df-dom 6704 df-fin 6705 df-sup 6945 df-inf 6946 df-dju 6999 df-inl 7008 df-inr 7009 df-case 7045 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-fz 9941 df-fzo 10074 df-fl 10201 df-mod 10254 df-seqfrec 10377 df-exp 10451 df-fac 10635 df-cj 10780 df-re 10781 df-im 10782 df-rsqrt 10936 df-abs 10937 df-dvds 11724 df-prm 12036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |