![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infpn2 | GIF version |
Description: There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12377, so by unbendc 12473 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpn2.1 | ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} |
Ref | Expression |
---|---|
infpn2 | ⊢ 𝑆 ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 9584 | . . . . . . 7 ⊢ (𝑟 ∈ (ℤ≥‘2) → 𝑟 ∈ ℕ) | |
2 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) |
3 | simpll 527 | . . . . . 6 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) | |
4 | eluz2b2 9621 | . . . . . . . 8 ⊢ (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟)) | |
5 | 4 | a1i 9 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟))) |
6 | nndivdvds 11821 | . . . . . . . . 9 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑚 ∥ 𝑟 ↔ (𝑟 / 𝑚) ∈ ℕ)) | |
7 | 6 | imbi1d 231 | . . . . . . . 8 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
8 | 7 | ralbidva 2486 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
9 | 5, 8 | anbi12d 473 | . . . . . 6 ⊢ (𝑟 ∈ ℕ → ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
10 | 2, 3, 9 | pm5.21nii 705 | . . . . 5 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
11 | anass 401 | . . . . 5 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) | |
12 | 10, 11 | bitri 184 | . . . 4 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
13 | isprm2 12135 | . . . 4 ⊢ (𝑟 ∈ ℙ ↔ (𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) | |
14 | breq2 4022 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (1 < 𝑛 ↔ 1 < 𝑟)) | |
15 | oveq1 5898 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑛 / 𝑚) = (𝑟 / 𝑚)) | |
16 | 15 | eleq1d 2258 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑟 / 𝑚) ∈ ℕ)) |
17 | equequ2 1724 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑚 = 𝑛 ↔ 𝑚 = 𝑟)) | |
18 | 17 | orbi2d 791 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑟))) |
19 | 16, 18 | imbi12d 234 | . . . . . . 7 ⊢ (𝑛 = 𝑟 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
20 | 19 | ralbidv 2490 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
21 | 14, 20 | anbi12d 473 | . . . . 5 ⊢ (𝑛 = 𝑟 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
22 | infpn2.1 | . . . . 5 ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} | |
23 | 21, 22 | elrab2 2911 | . . . 4 ⊢ (𝑟 ∈ 𝑆 ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
24 | 12, 13, 23 | 3bitr4i 212 | . . 3 ⊢ (𝑟 ∈ ℙ ↔ 𝑟 ∈ 𝑆) |
25 | 24 | eqriv 2186 | . 2 ⊢ ℙ = 𝑆 |
26 | prminf 12474 | . 2 ⊢ ℙ ≈ ℕ | |
27 | 25, 26 | eqbrtrri 4041 | 1 ⊢ 𝑆 ≈ ℕ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2160 ∀wral 2468 {crab 2472 class class class wbr 4018 ‘cfv 5231 (class class class)co 5891 ≈ cen 6756 1c1 7830 < clt 8010 / cdiv 8647 ℕcn 8937 2c2 8988 ℤ≥cuz 9546 ∥ cdvds 11812 ℙcprime 12125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 ax-pre-mulext 7947 ax-arch 7948 ax-caucvg 7949 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-isom 5240 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-frec 6410 df-1o 6435 df-2o 6436 df-er 6553 df-pm 6669 df-en 6759 df-dom 6760 df-fin 6761 df-sup 7001 df-inf 7002 df-dju 7055 df-inl 7064 df-inr 7065 df-case 7101 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-reap 8550 df-ap 8557 df-div 8648 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-n0 9195 df-z 9272 df-uz 9547 df-q 9638 df-rp 9672 df-fz 10027 df-fzo 10161 df-fl 10288 df-mod 10341 df-seqfrec 10464 df-exp 10538 df-fac 10724 df-cj 10869 df-re 10870 df-im 10871 df-rsqrt 11025 df-abs 11026 df-dvds 11813 df-prm 12126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |