| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infpn2 | GIF version | ||
| Description: There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12530, so by unbendc 12671 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.) |
| Ref | Expression |
|---|---|
| infpn2.1 | ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} |
| Ref | Expression |
|---|---|
| infpn2 | ⊢ 𝑆 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 9640 | . . . . . . 7 ⊢ (𝑟 ∈ (ℤ≥‘2) → 𝑟 ∈ ℕ) | |
| 2 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) |
| 3 | simpll 527 | . . . . . 6 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) | |
| 4 | eluz2b2 9677 | . . . . . . . 8 ⊢ (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟)) | |
| 5 | 4 | a1i 9 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟))) |
| 6 | nndivdvds 11961 | . . . . . . . . 9 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑚 ∥ 𝑟 ↔ (𝑟 / 𝑚) ∈ ℕ)) | |
| 7 | 6 | imbi1d 231 | . . . . . . . 8 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 8 | 7 | ralbidva 2493 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 9 | 5, 8 | anbi12d 473 | . . . . . 6 ⊢ (𝑟 ∈ ℕ → ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
| 10 | 2, 3, 9 | pm5.21nii 705 | . . . . 5 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 11 | anass 401 | . . . . 5 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) | |
| 12 | 10, 11 | bitri 184 | . . . 4 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
| 13 | isprm2 12285 | . . . 4 ⊢ (𝑟 ∈ ℙ ↔ (𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) | |
| 14 | breq2 4037 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (1 < 𝑛 ↔ 1 < 𝑟)) | |
| 15 | oveq1 5929 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑛 / 𝑚) = (𝑟 / 𝑚)) | |
| 16 | 15 | eleq1d 2265 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑟 / 𝑚) ∈ ℕ)) |
| 17 | equequ2 1727 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑚 = 𝑛 ↔ 𝑚 = 𝑟)) | |
| 18 | 17 | orbi2d 791 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑟))) |
| 19 | 16, 18 | imbi12d 234 | . . . . . . 7 ⊢ (𝑛 = 𝑟 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 20 | 19 | ralbidv 2497 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 21 | 14, 20 | anbi12d 473 | . . . . 5 ⊢ (𝑛 = 𝑟 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
| 22 | infpn2.1 | . . . . 5 ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} | |
| 23 | 21, 22 | elrab2 2923 | . . . 4 ⊢ (𝑟 ∈ 𝑆 ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
| 24 | 12, 13, 23 | 3bitr4i 212 | . . 3 ⊢ (𝑟 ∈ ℙ ↔ 𝑟 ∈ 𝑆) |
| 25 | 24 | eqriv 2193 | . 2 ⊢ ℙ = 𝑆 |
| 26 | prminf 12672 | . 2 ⊢ ℙ ≈ ℕ | |
| 27 | 25, 26 | eqbrtrri 4056 | 1 ⊢ 𝑆 ≈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ≈ cen 6797 1c1 7880 < clt 8061 / cdiv 8699 ℕcn 8990 2c2 9041 ℤ≥cuz 9601 ∥ cdvds 11952 ℙcprime 12275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-2o 6475 df-er 6592 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-dju 7104 df-inl 7113 df-inr 7114 df-case 7150 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-prm 12276 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |