ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpn2 GIF version

Theorem infpn2 12385
Description: There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12287, so by unbendc 12383 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}
Assertion
Ref Expression
infpn2 𝑆 ≈ ℕ
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝑆(𝑚,𝑛)

Proof of Theorem infpn2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9500 . . . . . . 7 (𝑟 ∈ (ℤ‘2) → 𝑟 ∈ ℕ)
21adantr 274 . . . . . 6 ((𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ)
3 simpll 519 . . . . . 6 (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ)
4 eluz2b2 9537 . . . . . . . 8 (𝑟 ∈ (ℤ‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟))
54a1i 9 . . . . . . 7 (𝑟 ∈ ℕ → (𝑟 ∈ (ℤ‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟)))
6 nndivdvds 11732 . . . . . . . . 9 ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑚𝑟 ↔ (𝑟 / 𝑚) ∈ ℕ))
76imbi1d 230 . . . . . . . 8 ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
87ralbidva 2461 . . . . . . 7 (𝑟 ∈ ℕ → (∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
95, 8anbi12d 465 . . . . . 6 (𝑟 ∈ ℕ → ((𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
102, 3, 9pm5.21nii 694 . . . . 5 ((𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
11 anass 399 . . . . 5 (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
1210, 11bitri 183 . . . 4 ((𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
13 isprm2 12045 . . . 4 (𝑟 ∈ ℙ ↔ (𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
14 breq2 3985 . . . . . 6 (𝑛 = 𝑟 → (1 < 𝑛 ↔ 1 < 𝑟))
15 oveq1 5848 . . . . . . . . 9 (𝑛 = 𝑟 → (𝑛 / 𝑚) = (𝑟 / 𝑚))
1615eleq1d 2234 . . . . . . . 8 (𝑛 = 𝑟 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑟 / 𝑚) ∈ ℕ))
17 equequ2 1701 . . . . . . . . 9 (𝑛 = 𝑟 → (𝑚 = 𝑛𝑚 = 𝑟))
1817orbi2d 780 . . . . . . . 8 (𝑛 = 𝑟 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑟)))
1916, 18imbi12d 233 . . . . . . 7 (𝑛 = 𝑟 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
2019ralbidv 2465 . . . . . 6 (𝑛 = 𝑟 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
2114, 20anbi12d 465 . . . . 5 (𝑛 = 𝑟 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
22 infpn2.1 . . . . 5 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}
2321, 22elrab2 2884 . . . 4 (𝑟𝑆 ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
2412, 13, 233bitr4i 211 . . 3 (𝑟 ∈ ℙ ↔ 𝑟𝑆)
2524eqriv 2162 . 2 ℙ = 𝑆
26 prminf 12384 . 2 ℙ ≈ ℕ
2725, 26eqbrtrri 4004 1 𝑆 ≈ ℕ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  wral 2443  {crab 2447   class class class wbr 3981  cfv 5187  (class class class)co 5841  cen 6700  1c1 7750   < clt 7929   / cdiv 8564  cn 8853  2c2 8904  cuz 9462  cdvds 11723  cprime 12035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-pm 6613  df-en 6703  df-dom 6704  df-fin 6705  df-sup 6945  df-inf 6946  df-dju 6999  df-inl 7008  df-inr 7009  df-case 7045  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-fac 10635  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-prm 12036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator