| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infpn2 | GIF version | ||
| Description: There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12879, so by unbendc 13020 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.) |
| Ref | Expression |
|---|---|
| infpn2.1 | ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} |
| Ref | Expression |
|---|---|
| infpn2 | ⊢ 𝑆 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 9757 | . . . . . . 7 ⊢ (𝑟 ∈ (ℤ≥‘2) → 𝑟 ∈ ℕ) | |
| 2 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) |
| 3 | simpll 527 | . . . . . 6 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) | |
| 4 | eluz2b2 9794 | . . . . . . . 8 ⊢ (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟)) | |
| 5 | 4 | a1i 9 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟))) |
| 6 | nndivdvds 12302 | . . . . . . . . 9 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑚 ∥ 𝑟 ↔ (𝑟 / 𝑚) ∈ ℕ)) | |
| 7 | 6 | imbi1d 231 | . . . . . . . 8 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 8 | 7 | ralbidva 2526 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 9 | 5, 8 | anbi12d 473 | . . . . . 6 ⊢ (𝑟 ∈ ℕ → ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
| 10 | 2, 3, 9 | pm5.21nii 709 | . . . . 5 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 11 | anass 401 | . . . . 5 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) | |
| 12 | 10, 11 | bitri 184 | . . . 4 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
| 13 | isprm2 12634 | . . . 4 ⊢ (𝑟 ∈ ℙ ↔ (𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) | |
| 14 | breq2 4086 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (1 < 𝑛 ↔ 1 < 𝑟)) | |
| 15 | oveq1 6007 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑛 / 𝑚) = (𝑟 / 𝑚)) | |
| 16 | 15 | eleq1d 2298 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑟 / 𝑚) ∈ ℕ)) |
| 17 | equequ2 1759 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑚 = 𝑛 ↔ 𝑚 = 𝑟)) | |
| 18 | 17 | orbi2d 795 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑟))) |
| 19 | 16, 18 | imbi12d 234 | . . . . . . 7 ⊢ (𝑛 = 𝑟 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 20 | 19 | ralbidv 2530 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
| 21 | 14, 20 | anbi12d 473 | . . . . 5 ⊢ (𝑛 = 𝑟 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
| 22 | infpn2.1 | . . . . 5 ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} | |
| 23 | 21, 22 | elrab2 2962 | . . . 4 ⊢ (𝑟 ∈ 𝑆 ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
| 24 | 12, 13, 23 | 3bitr4i 212 | . . 3 ⊢ (𝑟 ∈ ℙ ↔ 𝑟 ∈ 𝑆) |
| 25 | 24 | eqriv 2226 | . 2 ⊢ ℙ = 𝑆 |
| 26 | prminf 13021 | . 2 ⊢ ℙ ≈ ℕ | |
| 27 | 25, 26 | eqbrtrri 4105 | 1 ⊢ 𝑆 ≈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 ≈ cen 6883 1c1 7996 < clt 8177 / cdiv 8815 ℕcn 9106 2c2 9157 ℤ≥cuz 9718 ∥ cdvds 12293 ℙcprime 12624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-2o 6561 df-er 6678 df-pm 6796 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-inf 7148 df-dju 7201 df-inl 7210 df-inr 7211 df-case 7247 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-dvds 12294 df-prm 12625 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |