Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infpn2 | GIF version |
Description: There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12302, so by unbendc 12398 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpn2.1 | ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} |
Ref | Expression |
---|---|
infpn2 | ⊢ 𝑆 ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 9514 | . . . . . . 7 ⊢ (𝑟 ∈ (ℤ≥‘2) → 𝑟 ∈ ℕ) | |
2 | 1 | adantr 274 | . . . . . 6 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) |
3 | simpll 524 | . . . . . 6 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ) | |
4 | eluz2b2 9551 | . . . . . . . 8 ⊢ (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟)) | |
5 | 4 | a1i 9 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (𝑟 ∈ (ℤ≥‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟))) |
6 | nndivdvds 11747 | . . . . . . . . 9 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑚 ∥ 𝑟 ↔ (𝑟 / 𝑚) ∈ ℕ)) | |
7 | 6 | imbi1d 230 | . . . . . . . 8 ⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
8 | 7 | ralbidva 2466 | . . . . . . 7 ⊢ (𝑟 ∈ ℕ → (∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
9 | 5, 8 | anbi12d 470 | . . . . . 6 ⊢ (𝑟 ∈ ℕ → ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
10 | 2, 3, 9 | pm5.21nii 699 | . . . . 5 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
11 | anass 399 | . . . . 5 ⊢ (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) | |
12 | 10, 11 | bitri 183 | . . . 4 ⊢ ((𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
13 | isprm2 12060 | . . . 4 ⊢ (𝑟 ∈ ℙ ↔ (𝑟 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) | |
14 | breq2 3991 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (1 < 𝑛 ↔ 1 < 𝑟)) | |
15 | oveq1 5858 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑛 / 𝑚) = (𝑟 / 𝑚)) | |
16 | 15 | eleq1d 2239 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑟 / 𝑚) ∈ ℕ)) |
17 | equequ2 1706 | . . . . . . . . 9 ⊢ (𝑛 = 𝑟 → (𝑚 = 𝑛 ↔ 𝑚 = 𝑟)) | |
18 | 17 | orbi2d 785 | . . . . . . . 8 ⊢ (𝑛 = 𝑟 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑟))) |
19 | 16, 18 | imbi12d 233 | . . . . . . 7 ⊢ (𝑛 = 𝑟 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
20 | 19 | ralbidv 2470 | . . . . . 6 ⊢ (𝑛 = 𝑟 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))) |
21 | 14, 20 | anbi12d 470 | . . . . 5 ⊢ (𝑛 = 𝑟 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
22 | infpn2.1 | . . . . 5 ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} | |
23 | 21, 22 | elrab2 2889 | . . . 4 ⊢ (𝑟 ∈ 𝑆 ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))) |
24 | 12, 13, 23 | 3bitr4i 211 | . . 3 ⊢ (𝑟 ∈ ℙ ↔ 𝑟 ∈ 𝑆) |
25 | 24 | eqriv 2167 | . 2 ⊢ ℙ = 𝑆 |
26 | prminf 12399 | . 2 ⊢ ℙ ≈ ℕ | |
27 | 25, 26 | eqbrtrri 4010 | 1 ⊢ 𝑆 ≈ ℕ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∀wral 2448 {crab 2452 class class class wbr 3987 ‘cfv 5196 (class class class)co 5851 ≈ cen 6713 1c1 7764 < clt 7943 / cdiv 8578 ℕcn 8867 2c2 8918 ℤ≥cuz 9476 ∥ cdvds 11738 ℙcprime 12050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 ax-arch 7882 ax-caucvg 7883 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-1o 6393 df-2o 6394 df-er 6510 df-pm 6626 df-en 6716 df-dom 6717 df-fin 6718 df-sup 6958 df-inf 6959 df-dju 7012 df-inl 7021 df-inr 7022 df-case 7058 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-2 8926 df-3 8927 df-4 8928 df-n0 9125 df-z 9202 df-uz 9477 df-q 9568 df-rp 9600 df-fz 9955 df-fzo 10088 df-fl 10215 df-mod 10268 df-seqfrec 10391 df-exp 10465 df-fac 10649 df-cj 10795 df-re 10796 df-im 10797 df-rsqrt 10951 df-abs 10952 df-dvds 11739 df-prm 12051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |