ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpn2 GIF version

Theorem infpn2 12698
Description: There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12555, so by unbendc 12696 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}
Assertion
Ref Expression
infpn2 𝑆 ≈ ℕ
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝑆(𝑚,𝑛)

Proof of Theorem infpn2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9657 . . . . . . 7 (𝑟 ∈ (ℤ‘2) → 𝑟 ∈ ℕ)
21adantr 276 . . . . . 6 ((𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ)
3 simpll 527 . . . . . 6 (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) → 𝑟 ∈ ℕ)
4 eluz2b2 9694 . . . . . . . 8 (𝑟 ∈ (ℤ‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟))
54a1i 9 . . . . . . 7 (𝑟 ∈ ℕ → (𝑟 ∈ (ℤ‘2) ↔ (𝑟 ∈ ℕ ∧ 1 < 𝑟)))
6 nndivdvds 11978 . . . . . . . . 9 ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑚𝑟 ↔ (𝑟 / 𝑚) ∈ ℕ))
76imbi1d 231 . . . . . . . 8 ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
87ralbidva 2493 . . . . . . 7 (𝑟 ∈ ℕ → (∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
95, 8anbi12d 473 . . . . . 6 (𝑟 ∈ ℕ → ((𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
102, 3, 9pm5.21nii 705 . . . . 5 ((𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ ((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
11 anass 401 . . . . 5 (((𝑟 ∈ ℕ ∧ 1 < 𝑟) ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
1210, 11bitri 184 . . . 4 ((𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))) ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
13 isprm2 12310 . . . 4 (𝑟 ∈ ℙ ↔ (𝑟 ∈ (ℤ‘2) ∧ ∀𝑚 ∈ ℕ (𝑚𝑟 → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
14 breq2 4038 . . . . . 6 (𝑛 = 𝑟 → (1 < 𝑛 ↔ 1 < 𝑟))
15 oveq1 5932 . . . . . . . . 9 (𝑛 = 𝑟 → (𝑛 / 𝑚) = (𝑟 / 𝑚))
1615eleq1d 2265 . . . . . . . 8 (𝑛 = 𝑟 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑟 / 𝑚) ∈ ℕ))
17 equequ2 1727 . . . . . . . . 9 (𝑛 = 𝑟 → (𝑚 = 𝑛𝑚 = 𝑟))
1817orbi2d 791 . . . . . . . 8 (𝑛 = 𝑟 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑟)))
1916, 18imbi12d 234 . . . . . . 7 (𝑛 = 𝑟 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
2019ralbidv 2497 . . . . . 6 (𝑛 = 𝑟 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟))))
2114, 20anbi12d 473 . . . . 5 (𝑛 = 𝑟 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
22 infpn2.1 . . . . 5 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}
2321, 22elrab2 2923 . . . 4 (𝑟𝑆 ↔ (𝑟 ∈ ℕ ∧ (1 < 𝑟 ∧ ∀𝑚 ∈ ℕ ((𝑟 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑟)))))
2412, 13, 233bitr4i 212 . . 3 (𝑟 ∈ ℙ ↔ 𝑟𝑆)
2524eqriv 2193 . 2 ℙ = 𝑆
26 prminf 12697 . 2 ℙ ≈ ℕ
2725, 26eqbrtrri 4057 1 𝑆 ≈ ℕ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  {crab 2479   class class class wbr 4034  cfv 5259  (class class class)co 5925  cen 6806  1c1 7897   < clt 8078   / cdiv 8716  cn 9007  2c2 9058  cuz 9618  cdvds 11969  cprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-dju 7113  df-inl 7122  df-inr 7123  df-case 7159  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-prm 12301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator