| Step | Hyp | Ref
 | Expression | 
| 1 |   | dff13 5815 | 
. 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣))) | 
| 2 |   | dff13f.2 | 
. . . . . . . . 9
⊢
Ⅎ𝑦𝐹 | 
| 3 |   | nfcv 2339 | 
. . . . . . . . 9
⊢
Ⅎ𝑦𝑤 | 
| 4 | 2, 3 | nffv 5568 | 
. . . . . . . 8
⊢
Ⅎ𝑦(𝐹‘𝑤) | 
| 5 |   | nfcv 2339 | 
. . . . . . . . 9
⊢
Ⅎ𝑦𝑣 | 
| 6 | 2, 5 | nffv 5568 | 
. . . . . . . 8
⊢
Ⅎ𝑦(𝐹‘𝑣) | 
| 7 | 4, 6 | nfeq 2347 | 
. . . . . . 7
⊢
Ⅎ𝑦(𝐹‘𝑤) = (𝐹‘𝑣) | 
| 8 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑦 𝑤 = 𝑣 | 
| 9 | 7, 8 | nfim 1586 | 
. . . . . 6
⊢
Ⅎ𝑦((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) | 
| 10 |   | nfv 1542 | 
. . . . . 6
⊢
Ⅎ𝑣((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) | 
| 11 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑣 = 𝑦 → (𝐹‘𝑣) = (𝐹‘𝑦)) | 
| 12 | 11 | eqeq2d 2208 | 
. . . . . . 7
⊢ (𝑣 = 𝑦 → ((𝐹‘𝑤) = (𝐹‘𝑣) ↔ (𝐹‘𝑤) = (𝐹‘𝑦))) | 
| 13 |   | equequ2 1727 | 
. . . . . . 7
⊢ (𝑣 = 𝑦 → (𝑤 = 𝑣 ↔ 𝑤 = 𝑦)) | 
| 14 | 12, 13 | imbi12d 234 | 
. . . . . 6
⊢ (𝑣 = 𝑦 → (((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) ↔ ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦))) | 
| 15 | 9, 10, 14 | cbvral 2725 | 
. . . . 5
⊢
(∀𝑣 ∈
𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) ↔ ∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦)) | 
| 16 | 15 | ralbii 2503 | 
. . . 4
⊢
(∀𝑤 ∈
𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) ↔ ∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦)) | 
| 17 |   | nfcv 2339 | 
. . . . . 6
⊢
Ⅎ𝑥𝐴 | 
| 18 |   | dff13f.1 | 
. . . . . . . . 9
⊢
Ⅎ𝑥𝐹 | 
| 19 |   | nfcv 2339 | 
. . . . . . . . 9
⊢
Ⅎ𝑥𝑤 | 
| 20 | 18, 19 | nffv 5568 | 
. . . . . . . 8
⊢
Ⅎ𝑥(𝐹‘𝑤) | 
| 21 |   | nfcv 2339 | 
. . . . . . . . 9
⊢
Ⅎ𝑥𝑦 | 
| 22 | 18, 21 | nffv 5568 | 
. . . . . . . 8
⊢
Ⅎ𝑥(𝐹‘𝑦) | 
| 23 | 20, 22 | nfeq 2347 | 
. . . . . . 7
⊢
Ⅎ𝑥(𝐹‘𝑤) = (𝐹‘𝑦) | 
| 24 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑥 𝑤 = 𝑦 | 
| 25 | 23, 24 | nfim 1586 | 
. . . . . 6
⊢
Ⅎ𝑥((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) | 
| 26 | 17, 25 | nfralxy 2535 | 
. . . . 5
⊢
Ⅎ𝑥∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) | 
| 27 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑤∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) | 
| 28 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) | 
| 29 | 28 | eqeq1d 2205 | 
. . . . . . 7
⊢ (𝑤 = 𝑥 → ((𝐹‘𝑤) = (𝐹‘𝑦) ↔ (𝐹‘𝑥) = (𝐹‘𝑦))) | 
| 30 |   | equequ1 1726 | 
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝑤 = 𝑦 ↔ 𝑥 = 𝑦)) | 
| 31 | 29, 30 | imbi12d 234 | 
. . . . . 6
⊢ (𝑤 = 𝑥 → (((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 32 | 31 | ralbidv 2497 | 
. . . . 5
⊢ (𝑤 = 𝑥 → (∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 33 | 26, 27, 32 | cbvral 2725 | 
. . . 4
⊢
(∀𝑤 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 34 | 16, 33 | bitri 184 | 
. . 3
⊢
(∀𝑤 ∈
𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 35 | 34 | anbi2i 457 | 
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣)) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 36 | 1, 35 | bitri 184 | 
1
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |