| Step | Hyp | Ref
| Expression |
| 1 | | dff13 5818 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣))) |
| 2 | | dff13f.2 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐹 |
| 3 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝑤 |
| 4 | 2, 3 | nffv 5571 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝐹‘𝑤) |
| 5 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝑣 |
| 6 | 2, 5 | nffv 5571 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝐹‘𝑣) |
| 7 | 4, 6 | nfeq 2347 |
. . . . . . 7
⊢
Ⅎ𝑦(𝐹‘𝑤) = (𝐹‘𝑣) |
| 8 | | nfv 1542 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑤 = 𝑣 |
| 9 | 7, 8 | nfim 1586 |
. . . . . 6
⊢
Ⅎ𝑦((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) |
| 10 | | nfv 1542 |
. . . . . 6
⊢
Ⅎ𝑣((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) |
| 11 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑣 = 𝑦 → (𝐹‘𝑣) = (𝐹‘𝑦)) |
| 12 | 11 | eqeq2d 2208 |
. . . . . . 7
⊢ (𝑣 = 𝑦 → ((𝐹‘𝑤) = (𝐹‘𝑣) ↔ (𝐹‘𝑤) = (𝐹‘𝑦))) |
| 13 | | equequ2 1727 |
. . . . . . 7
⊢ (𝑣 = 𝑦 → (𝑤 = 𝑣 ↔ 𝑤 = 𝑦)) |
| 14 | 12, 13 | imbi12d 234 |
. . . . . 6
⊢ (𝑣 = 𝑦 → (((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) ↔ ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦))) |
| 15 | 9, 10, 14 | cbvral 2725 |
. . . . 5
⊢
(∀𝑣 ∈
𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) ↔ ∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦)) |
| 16 | 15 | ralbii 2503 |
. . . 4
⊢
(∀𝑤 ∈
𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) ↔ ∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦)) |
| 17 | | nfcv 2339 |
. . . . . 6
⊢
Ⅎ𝑥𝐴 |
| 18 | | dff13f.1 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐹 |
| 19 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑤 |
| 20 | 18, 19 | nffv 5571 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐹‘𝑤) |
| 21 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑦 |
| 22 | 18, 21 | nffv 5571 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐹‘𝑦) |
| 23 | 20, 22 | nfeq 2347 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐹‘𝑤) = (𝐹‘𝑦) |
| 24 | | nfv 1542 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑤 = 𝑦 |
| 25 | 23, 24 | nfim 1586 |
. . . . . 6
⊢
Ⅎ𝑥((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) |
| 26 | 17, 25 | nfralxy 2535 |
. . . . 5
⊢
Ⅎ𝑥∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) |
| 27 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑤∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) |
| 28 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) |
| 29 | 28 | eqeq1d 2205 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ((𝐹‘𝑤) = (𝐹‘𝑦) ↔ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 30 | | equequ1 1726 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝑤 = 𝑦 ↔ 𝑥 = 𝑦)) |
| 31 | 29, 30 | imbi12d 234 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 32 | 31 | ralbidv 2497 |
. . . . 5
⊢ (𝑤 = 𝑥 → (∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 33 | 26, 27, 32 | cbvral 2725 |
. . . 4
⊢
(∀𝑤 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑦) → 𝑤 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 34 | 16, 33 | bitri 184 |
. . 3
⊢
(∀𝑤 ∈
𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 35 | 34 | anbi2i 457 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑣) → 𝑤 = 𝑣)) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 36 | 1, 35 | bitri 184 |
1
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |