ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoti GIF version

Theorem isoti 6758
Description: An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
Assertion
Ref Expression
isoti (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝐵,𝑣   𝑢,𝐹,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣

Proof of Theorem isoti
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isocnv 5606 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 isotilem 6757 . . . 4 (𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → ∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥))))
31, 2syl 14 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → ∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥))))
4 isotilem 6757 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
53, 4impbid 128 . 2 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥))))
6 equequ1 1646 . . . 4 (𝑥 = 𝑢 → (𝑥 = 𝑦𝑢 = 𝑦))
7 breq1 3856 . . . . . 6 (𝑥 = 𝑢 → (𝑥𝑆𝑦𝑢𝑆𝑦))
87notbid 628 . . . . 5 (𝑥 = 𝑢 → (¬ 𝑥𝑆𝑦 ↔ ¬ 𝑢𝑆𝑦))
9 breq2 3857 . . . . . 6 (𝑥 = 𝑢 → (𝑦𝑆𝑥𝑦𝑆𝑢))
109notbid 628 . . . . 5 (𝑥 = 𝑢 → (¬ 𝑦𝑆𝑥 ↔ ¬ 𝑦𝑆𝑢))
118, 10anbi12d 458 . . . 4 (𝑥 = 𝑢 → ((¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥) ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢)))
126, 11bibi12d 234 . . 3 (𝑥 = 𝑢 → ((𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ (𝑢 = 𝑦 ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢))))
13 equequ2 1647 . . . 4 (𝑦 = 𝑣 → (𝑢 = 𝑦𝑢 = 𝑣))
14 breq2 3857 . . . . . 6 (𝑦 = 𝑣 → (𝑢𝑆𝑦𝑢𝑆𝑣))
1514notbid 628 . . . . 5 (𝑦 = 𝑣 → (¬ 𝑢𝑆𝑦 ↔ ¬ 𝑢𝑆𝑣))
16 breq1 3856 . . . . . 6 (𝑦 = 𝑣 → (𝑦𝑆𝑢𝑣𝑆𝑢))
1716notbid 628 . . . . 5 (𝑦 = 𝑣 → (¬ 𝑦𝑆𝑢 ↔ ¬ 𝑣𝑆𝑢))
1815, 17anbi12d 458 . . . 4 (𝑦 = 𝑣 → ((¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢) ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))
1913, 18bibi12d 234 . . 3 (𝑦 = 𝑣 → ((𝑢 = 𝑦 ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢)) ↔ (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
2012, 19cbvral2v 2601 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))
215, 20syl6bb 195 1 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wral 2360   class class class wbr 3853  ccnv 4453   Isom wiso 5031
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-sbc 2844  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-isom 5039
This theorem is referenced by:  supisoti  6761
  Copyright terms: Public domain W3C validator