Step | Hyp | Ref
| Expression |
1 | | isocnv 5756 |
. . . 4
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) |
2 | | isotilem 6942 |
. . . 4
⊢ (◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)))) |
3 | 1, 2 | syl 14 |
. . 3
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)))) |
4 | | isotilem 6942 |
. . 3
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))) |
5 | 3, 4 | impbid 128 |
. 2
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)))) |
6 | | equequ1 1692 |
. . . 4
⊢ (𝑥 = 𝑢 → (𝑥 = 𝑦 ↔ 𝑢 = 𝑦)) |
7 | | breq1 3968 |
. . . . . 6
⊢ (𝑥 = 𝑢 → (𝑥𝑆𝑦 ↔ 𝑢𝑆𝑦)) |
8 | 7 | notbid 657 |
. . . . 5
⊢ (𝑥 = 𝑢 → (¬ 𝑥𝑆𝑦 ↔ ¬ 𝑢𝑆𝑦)) |
9 | | breq2 3969 |
. . . . . 6
⊢ (𝑥 = 𝑢 → (𝑦𝑆𝑥 ↔ 𝑦𝑆𝑢)) |
10 | 9 | notbid 657 |
. . . . 5
⊢ (𝑥 = 𝑢 → (¬ 𝑦𝑆𝑥 ↔ ¬ 𝑦𝑆𝑢)) |
11 | 8, 10 | anbi12d 465 |
. . . 4
⊢ (𝑥 = 𝑢 → ((¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥) ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢))) |
12 | 6, 11 | bibi12d 234 |
. . 3
⊢ (𝑥 = 𝑢 → ((𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ (𝑢 = 𝑦 ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢)))) |
13 | | equequ2 1693 |
. . . 4
⊢ (𝑦 = 𝑣 → (𝑢 = 𝑦 ↔ 𝑢 = 𝑣)) |
14 | | breq2 3969 |
. . . . . 6
⊢ (𝑦 = 𝑣 → (𝑢𝑆𝑦 ↔ 𝑢𝑆𝑣)) |
15 | 14 | notbid 657 |
. . . . 5
⊢ (𝑦 = 𝑣 → (¬ 𝑢𝑆𝑦 ↔ ¬ 𝑢𝑆𝑣)) |
16 | | breq1 3968 |
. . . . . 6
⊢ (𝑦 = 𝑣 → (𝑦𝑆𝑢 ↔ 𝑣𝑆𝑢)) |
17 | 16 | notbid 657 |
. . . . 5
⊢ (𝑦 = 𝑣 → (¬ 𝑦𝑆𝑢 ↔ ¬ 𝑣𝑆𝑢)) |
18 | 15, 17 | anbi12d 465 |
. . . 4
⊢ (𝑦 = 𝑣 → ((¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢) ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))) |
19 | 13, 18 | bibi12d 234 |
. . 3
⊢ (𝑦 = 𝑣 → ((𝑢 = 𝑦 ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢)) ↔ (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))) |
20 | 12, 19 | cbvral2v 2691 |
. 2
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))) |
21 | 5, 20 | bitrdi 195 |
1
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))) |